• Title/Summary/Keyword: Electromagnetic vibration

Search Result 406, Processing Time 0.03 seconds

A Study on Cantilever Beam Active Vibration Control using Electromagnetic Force (전자석을 이용한 외팔보 능동 진동 제어에 관한 연구)

  • Ko, Kang-Woong;Choi, Soo-Young;Kang, Ki-Won;Lee, Jong-Sung;Park, Ki-Heon
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2243-2245
    • /
    • 2001
  • 진동을 감소시키는 방법으로 과거에는 최적의 설계 변수를 선정하는 수동 제어 방법이 주로 연구되었으나, 보다 확실한 진동 제어를 위하여 최근에는 피드백 루프(Feedback loop)를 이용하는 능동제어에 대한 연구가 활발히 진행되고 있다. 본 연구에서는 능동제어에 의한 진동을 억제하는 방법에 대하여 연구하려고 한다. 진동체로는 외팔보를 선택하였으며 진동체의 진동을 제어하는 장치로는 제어코일과 베이스코일로 구성된 Push-Pull 타입의 전자석 제어회로를 직접 제작하고 시스템을 모델링 하고자 한다.

  • PDF

Optimum Rotor Shaping for Torque Improvement of Double Stator Switched Reluctance Motor

  • Tavakkoli, Mohammadali;Moallem, Mehdi
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.4
    • /
    • pp.1315-1323
    • /
    • 2014
  • Although the power density in Double Stator Switched Reluctance Motor (DSSRM) has been improved, the torque ripple is still very high. So, it is important to reduce the torque ripple for specific applications such as Electric Vehicles (EVs). In This paper, an effective rotor shaping optimization technique for torque ripple reduction of DSSRM is presented. This method leads to the lower torque pulsation without significant reduction in the average torque. The method is based on shape optimization of the rotor using Finite Element Method and Taguchi's optimization method for rotor reshaping for redistribution of the flux so that the phase inductance profile has smoother variation as the rotor poles move into alignment with excited stator poles. To check on new design robustness, mechanical analysis was used to evaluate structural conformity against local electromagnetic forces which cause vibration and deformation. The results show that this shape optimization technique has profound effect on the torque ripple reduction.

A Study of Inspection Module for Verifying Reliability on Railway Vehicle (철도차량 검측모듈의 신뢰성 검증 시험 연구)

  • Na, Kyung-min;Park, Young;Kwon, Sam-young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.7
    • /
    • pp.1155-1161
    • /
    • 2017
  • This study examines environmental performance of the arcing measurement module according to international standards. The module assesses the collected current performance using a computer system. The module is required to assess environmental impact resulting from electromagnetic waves, shock and temperature change during train operation. The test includes testing EMI/EMC, vibration, shock and temperature cycling for interface between trains and the arcing measurement module. The module test items were determined in compliance with the standards suggested by the International Electrotechnical Commission (IEC) and Europaische Norm (EN). This study describes the method of test, test equipment operation and how to choose relevant performance standards. The analysis and test results of environmental performance for the module based on computer system are described in this study.

Torque Ripple Minimization for IPMSM with Non Sinusoidal Back-EMF (비정현적인 역기전력을 가진 매입형 영구자석 동기전동기의 토크리플 저감에 관한 연구)

  • 이상훈;홍인표;박성준;김철우
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.1
    • /
    • pp.91-100
    • /
    • 2002
  • This paper deals with the ripple reduction of the electromagnetic torque developed in IPMSM(Interior Permanent Magnet Synchronous Motor). Generally, torque ripple is an important causes of vibration and noise of motor. For reducing torque ripple in IPM with nonsinusoidal EMF, the optimal current which is able to control maximum torque/ampere is considered to be introduced In the proposed method. The fact of torque ripple being reduced when the optimal current Is used in motor is verified through simulation and experiment.

A Study of Torque Ripple Minimization and Maximum Torque Control for IPMSM with Non Sinusoidal Back-EMF (비정현적인 역기전력을 가진 IPMSM의 토크리플 저감과 최대토크 제어에 관한 연구)

  • Hong In-Pyo;Lee Sang-Hun;Choi Cheol;Kim Jang-Mok;Kim Cheul-U
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.142-145
    • /
    • 2001
  • In this paper the electromagnetic torque developed in IPMSM(Interior Permanent Magnet Synchronous Motor) is analyzed. If flux distributions in the motor are not sinusoidal, a sinusoidal current produces important torque ripple. Torque ripple causes vibration and noise of motors. The optimized current waveforms for ripple free is able to be obtained by analysis of Back-EMF and torque equation. The method to find the optimal current is based on numerical predetermination. In this paper proposes current waveform which can eliminate the torque ripple, and the validity is verified through the simulation.

  • PDF

Analysis of Resultant Harmonic Field Density in Air Gap for Ratio Teeth Pitch vs Slot Width (치절(teeth pitch)과 슬롯폭의 비에 의한 공극의 합성고조파밀도해석)

  • Lee, Eun-Woong;Cho, Hyun-Gil;Kim, Jong-Gyeum;Lim, Jae-Il;Kim, Sung-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.171-173
    • /
    • 1995
  • Slot field harmonics exist in air gap due to inevitable slot constructure of induction motors. They give rise to noise by the electromagnetic vibration and mechanical pulsation. We calculate the slot field harmonics for varying the ratio of slot width vs teeth pitch using the carter's coefficent. We computate the flux density in air gap by FEM(Finite Element Method) and analyze it in frequency domain using DFT(Discrete Fourier Transform). We develop the new algorithm mixing FEM with DFT.

  • PDF

Harmonic Generation and System Response Characteristics in Electrified Railway(I) - Focused on System Response Characteristics - (전기철도에서의 고조파 발생과 계통응답특성(I) - 계통응답특성을 중심으로 -)

  • 오광해;이장무
    • Journal of the Korean Society for Railway
    • /
    • v.7 no.1
    • /
    • pp.60-64
    • /
    • 2004
  • Harmonic current originating from electric locomotives can be magnified due to the impedance characteristics of power supply circuit and bring about various problems. That is, electromagnetic interference with communication lines, operational trouble in signaling, overheat and/or vibration in power capacitor, mis-operation in protection relay and so on. Therefore, the exact assessment of the harmonic current flow must be undertaken at design and planning stage for the electric traction systems. for these reasons, this study propose a new approach to model and to analyse traction power feeding system focused on system response to current and voltage harmonic(PART I). Measurements of harmonics are also performed for railway power supply systems under normal operation. Spectrum and distortion analyses in measurement data are variously described in PART II.

Design and Analysis of a New Hybrid Electromagnetic Levitation System

  • Na, Uhn Joo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.1
    • /
    • pp.29-37
    • /
    • 2019
  • A new permanent magnet biased hybrid maglev actuator is developed. Compared to the classical hybrid maglev actuators, the new maglev has unique flux paths such that bias fluxes are separated with control flux paths. The control flux paths have minimum reluctances only developed by air gaps, so the currents to produce control fluxes can be minimized. The consumed power to operate this maglev system can also be minimized. The gravity load can be compensated with the static magnetic forces developed by the permanent magnet bias fluxes while external disturbances are controlled with the bidirectional AC magnetic forces developed by control fluxes by currents. 1-D circuit model is developed for this model such that the flux densities and magnetic forces are extensively analyzed. 3-D finite element model is also developed to analyze the performances of the maglev actuator.

Development of Hybrid Energy Harvesting Block and Evaluation on Power Generation Performance (하이브리드 에너지하베스팅 블록 개발 및 발전성능 평가)

  • Kim, Hyo-Jin;Park, Ji-Young;Jin, Kyu-Nam;Noh, Myung-Hyun
    • Land and Housing Review
    • /
    • v.5 no.2
    • /
    • pp.99-106
    • /
    • 2014
  • The purpose of this study is to develop hybrid energy blocks with piezoelectric and electromagnetic induction method. The developed energy block is able to be applied to the housing and facilities in the city and is suitable to adjust the characteristics of facilities. To develop the hybrid energy block, we analyzed the characteristics and requirements of various energy block types and drew improvement and application method to develop energy blocks. We compared and analyzed the characteristics and performance of the prototype energy blocks and the developed hybrid energy blocks. According to result of the comparison and analysis, the developed energy block shows higher performance of 12.7 times for adding one vibration and 28.9 times for five consecutive vibrations than that of a existing prototype energy block. This is consistent with research purposes for W-level electrical energy production. Thus, the new energy block will likely be possible to apply to the housing and urban facility.

The Study on a Fixing-clip of a Shield Can Shielding Electromagnetic wave (전자파 차단을 위한 �Q드캔용 고정 클립 개발에 관한 연구)

  • Park, Tai-Heoun;Park, Man-Gyu;Park, Sang-Heup;Kim, Key-Sun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.2
    • /
    • pp.554-560
    • /
    • 2013
  • This study proposes an structure that fixes the shielding device to two parts of the board by its two arranged clips. Said structure evenly distributes its loading/unloading load of the board and maintains the flatness of soldering area of the board. The structure of this study comprises a base part fixed to a printed circuit board and a clip part fixing a side wall of a shield can to the board, wherein the clip part is constituted with two clips fixable to two part of the shield can. Also, the structure of this study comprises a dented groove in order to easily solder the base part of clips and the printed circuit board. A mechanism is established and a design parameter was determined by a structure analysis and a vibration mode analysis. A single purpose machine for the production of the product was developed, the final workpiece was produced and the measuring-data and the computered-data was compared and reviewed.