• Title/Summary/Keyword: Electromagnetic Modeling

Search Result 420, Processing Time 0.027 seconds

Application on the Modeling Rusults of GPR Wave Propagation through Concrete Specimens for Rebar Detection In Concrete Specimens (전자파 모델링을 이용한 콘크리트 내 철근탐사)

  • 남국광;임홍철
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.10a
    • /
    • pp.135-140
    • /
    • 2001
  • The radar method is becoming one of the major nondestructive testing (NDT) techniques for concrete structures. Numerical modeling of electromagnetic wave is needed to analyze radar measurement results and to study the influence of measurement parameters on the radar measurements. Finite difference-time domain (FD-TD) method is used to simulate electromagnetic wave propagation through concrete specimens. In the experiments, three concrete specimens are made with the dimensions of 100 cm (length) x 100 cm (wideth) x 14 cm (depth). Three specimens had a Dl6 steel bar at 8, 10, 12 cm depth.

  • PDF

Arbitrary Sampling Method for Nonlinearity Identification of Frequency Multipliers

  • Park, Young-Cheol;Yoon, Hoi-Jin
    • Journal of electromagnetic engineering and science
    • /
    • v.8 no.1
    • /
    • pp.17-22
    • /
    • 2008
  • It is presented that sampling rates for behavioral modeling of quasi-memory less nonlinear devices can be far less than the Nyquist rate of the input signal. Although it has been believed that the sampling rate of nonlinear device modeling should be at least the Nyquist rate of the output signal, this paper suggests that far less than the Nyquist rate of the input signal can be applied to the modeling of quasi-memoryless nonlinear devices, such as frequency multipliers. To verify, a QPSK signal at 820 MHz were applied to a frequency tripler, whereby the device can be utilized as an up-converting mixer into 2.46 GHz with the aid of digital predistortion. AM-AM, AM-PM and PM-PM can be successfully measured regardless of sampling rates.

Simplified Modeling of Ring Resonators and Split Ring Resonators Using Magnetization

  • Jeon, Dongho;Lee, Bomson
    • Journal of electromagnetic engineering and science
    • /
    • v.13 no.2
    • /
    • pp.134-136
    • /
    • 2013
  • This paper examines various aspects of the electromagnetic responses of the ring resonator located in the transverse electromagnetic cell. In addition, an equivalent circuit for the ring resonator is proposed and analyzed based on the electromagnetic phenomenon of the resonator. The equivalent circuit was simply modeled based on the concept of magnetization. A method for achieving a wider operating bandwidth of the negative permeability is provided. The ring resonator with its resonant frequency of 13.56 MHz was designed and its characteristics were examined in terms of S-parameters, effective permeability, loss rate, bandwidth, etc. The circuit and electromagnetic simulation results show an excellent agreement as well as that of theory.

Analysis of Shielded Twisted Pair Cable to External Field Coupling by Expanded Chain Matrix Modeling

  • Cho, Yong-Sun;Jung, Hyun-Kyo;Cheon, Changyul;Chung, Young-Seek
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.6
    • /
    • pp.2049-2057
    • /
    • 2014
  • In this paper, a numerical method for analyzing coupling between high-altitude electromagnetic pulse (HEMP) as external field and a shielded twisted pair (STP) cable is proposed, which is based on an expanded chain matrix. Load responses of electromagnetic (EM) field excitation in uniform transmission line (TL) are solved by Baum-Liu-Tesche (BLT) equations in frequency domain, however, it is difficult to apply BLT equations to solve load responses of STP cable because the iteratively changing configuration of each twisted pairs are involved in cable. To avoid this problem and decrease memory and CPU time, we proposed the expanded chain matrix modeling method that is calculated using ABCD parameters, and applied multi-conductor transmission line (MTL) theory to consider the EMP coupling effectiveness of each twisted pairs. The results implemented by the proposed method are presented and compared with those obtained by the finite-difference time domain (FDTD) method as a kind of 3D full wave analysis.

Internal Resistive Source Modeling Technique for the Efficient Analysis of Planar Microwave Circuits Using FDTD (FDTD를 이용한 평판 구조 마이크로파 회로의 효율적인 해석을 위한 내부 저항 소스 모델링 방법)

  • 지정근;최재훈
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.10 no.2
    • /
    • pp.227-236
    • /
    • 1999
  • The finite difference time domain method (FDTD) is widely applied to the analysis of various microwave circuits. However, previous source modeling techniques have a lot of constraints and difficulties to apply for general geometries. Therefore, the internal resistive source modeling technique is suggested for efficiently analyzing various types of microwave circuit in this paper. Its efficiency is proved by comparing the computation time with that of hard source modeling. Accuracy is also verified by comparing the scattering parameters with those of previous source modeling methods and measurements for several microwave circuits.

  • PDF

Characterization of Microwave Active Circuits using the FDTD Method (FDTD를 이용한 마이크로파 능동 회로의 해석)

  • 황윤재;육종관;박한규
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.6
    • /
    • pp.528-537
    • /
    • 2002
  • In this paper, the extended FDTD is used for the analysis of microwave circuits including active elements. Lumped elements such as R, L, C which are inserted into a microstrip line are analyzed with the FDTD lumped element modeling. Parasitic capacitance and inductance could be obtained using network modeling and so it is sure that FDTD lumped element modeling makes it possible to get more accurate data which include parasite components. Moreover, a balanced mixer using two diodes that are modeled by an extended FDTD is designed and the more exact characteristic of the mixer is acquired than in current circuit simulator.

A Experiment of the damping effect for Electromagnetic Damper using DC Motor and Ballscrew (DC Motor와 Ballscrew를 이용한 Electromagnetic Damper Damping 효과 실험)

  • Kang, Jeong-Ho;Lee, Hac-Choel;Jeong, Young-Suk
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.124-126
    • /
    • 2008
  • In this Paper, the modeling of the electromagnetic damper for automobile suspension is presented and the validation of the model is demonstrated by experiments. An electromagnetic damper, composed of a rotary DC motor, and a ball screw and nut. The damper then operates as a linear electric actuator. The damper then operate as a linear electric actuator. The results indicate the proposed system is feasible and it is proved that the electromagnetic damper has better than oil damper of passive control system.

  • PDF

Electromagnetic Field Analysis on Surge Response of 500 kV EHV Single Circuit Transmission Tower in Lightning Protection System using Neural Networks

  • Jaipradidtham, Chamni
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1637-1640
    • /
    • 2005
  • This paper presents a technique for electromagnetic field analysis on surge response due to Mid-span back-flashovers effects in lightning protection system of 500 kV EHV single circuit transmission tower by the neural networks method. These analyses are based on modeling lightning return stroke as well as on coupling the electromagnetic fields of the stroke channel to the line. The ground conductivity influences both the electric field as well as the coupling mechanism and hence the magnitude and wave shape of the induced voltage. The technique can be used to analyzed the corona voltage effect, the effective of stroke to the span tower, the surge impedance of transmission lines. The maximum voltage from flashovers effects in the lines. The model is compatible with general electromagnetic transients programs such as the ATP-EMTP. The simulation results show that this study analyses for time-domain with those produced by a cascade multi-section model, the surge impedance of a full-sized tower hit directly by a lightning stroke is discussed.

  • PDF

Study on the Distribution of Electromagnetic Force for 154 kV Power Transmission Cable on Dual Underground Lines by Normal and Earth Fault Current (지중 2회선 154 kV 송전케이블의 정상 및 지락고장에 따른 전자기력 분포에 관한 연구)

  • Kim, Hui Min;Kim, So Young;Im, Sang Hyeon;Park, Gwan Soo
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.1 no.1
    • /
    • pp.21-27
    • /
    • 2015
  • The goal of this study is the size and distribution of the electromagnetic force generated by the current flowing through the second underground line of 154kV power transmission cables by using electromagnetic finite element analysis. So we interpret how mutually electromagnetic force has an effect on the comparable judgement of Trefoil, Duct and Flat, which shows in a numerical arrangement. 154kV OF 1200SQ Cable 1.281km not only is applicable to modeling for underground transmission cable but also examine the effect of line to line, phase to phase and size and direction of the electromagnetic force preparing for the occurrence of normal state and single-phase earth fault, which are arranged in trefoil, duct and flat formation between sections. As showing how the trajectory, and size distribution of the electromagnetic force translate as the arrangement of the cables when a steady-state current and a fault current flows on the underground cables, I hope that when Underground transmission is designed, this data will be useful information.

Frequency Response Analysis on PCB in Dual Resonant Cavity by Using Stochastical and Topological Modeling (확률론과 위상학적 모델링을 이용한 이중 공진구조 내의 PCB 주파수 응답해석)

  • Jung, In-Hwan;Lee, Jae-Wook;Lee, Young-Seung;Kwon, Jong-Hwa;Cho, Choon-Sik
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.9
    • /
    • pp.919-929
    • /
    • 2014
  • In recent, the requirements for the safety to the effects of high power electromagnetic wave have been increased along with the development of electricity and electronic equipments. The small sized electronic devices and the various components have been analyzed by using the full-EM simulation and solving a complete set of Maxwell equation. However, the deterministic approach has a drawback and much limitation in the electromagnetic analysis of an electrically large cavity with a high complexity of the structure. In this paper, statistical theory and topological modeling method are combined to analyze the large cavity with a complex structure. In particular, the PWB(Power Balance) method and BLT(Baum-Liu-Tesche) equation are combined and employed to solve the frequency response to the large-scaled cavity with remarkably reduced time-consumption. For instance, a PCB substrate inside box of box are considered as a large structure with a complexity.