• 제목/요약/키워드: Electromagnet

검색결과 251건 처리시간 0.03초

Novel compact and fast magnetic bearings by saturated main coils and linear auxiliary coils for the gas turbine generator of next generation fast reactors

  • Thai, Xuan Van;Choi, Suyong;Rim, Chun Taek
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2012년도 추계학술대회 논문집
    • /
    • pp.31-32
    • /
    • 2012
  • This paper presents a new design of magnetic bearing structure for application in Nuclear Power Plant (NPP). The proposed design includes so-called saturated coils which is used to generate the bias flux for bearing almost the whole mass of the rotor, and so-called linear auxiliary coil controlled to stabilize the suspension. The saturated coil is considered as an special electromagnet which is controlled to operate in the region of magnetic saturation in order to minimize the bias current as well as to enhance the magnetic flux density. This strategy will result in a very compact size of magnetic bearing as well as increasing the speed of the response of the current controller. The novel structure is expected to be applied to design very high power gas turbine generator of next generation of fast reactor in which the mass of rotor can reach 50 tons. The total power of the NPP can reach 2,000 MW. Moreover, the issue of arc occurrence between coils is also discussed and two solutions are proposed.

  • PDF

MR유체를 이용한 유량제어 밸브 (Development of Flow Control Valve Using MR Fluid)

  • 이형돈;배형섭;이육형;박명관
    • 제어로봇시스템학회논문지
    • /
    • 제17권9호
    • /
    • pp.888-891
    • /
    • 2011
  • This paper presents development of flow control valve using MR fluid. Generally, since the apparent viscosity of MR fluids is adjusted by applying magnetic fields, the MR valves can control high level fluid power without any mechanical moving parts. In this paper, flow control valve using MR fluid on the behavior of the magnetic field influence on the numerical analysis of more accurate electromagnetic parameters were obtained, even if when magnetic field apply inside of surrounding MR fluid from electromagnet, more realistic designing way analysis of characteristic of whole magnetic field distribution is suggested by surrounding magnetic material. Also, comparison of flow rate inlet and outlet, behavior of MR fluid in experiments proposed. A new type of flow control valve using MR fluid is proposed by analysis of behavior of MR fluid in experiments.

초등학교 과학 교과서에서 자기학 교육과정에 대한 고찰 (An Investigation on Magnetics Related Contents in Elementary Science Textbooks)

  • 윤석주;이재일
    • 한국자기학회지
    • /
    • 제19권2호
    • /
    • pp.74-79
    • /
    • 2009
  • 과학 교육의 출발점이라 할 수 있는 초등학교의 교육과정에서 자기학 단원이 어떻게 교육되는지 검토하였다. 초등학교에서 자기학은 3학년 1학기 자석놀이 단원과 6학년 1학기 전자석 단원에서 다루어지는 것을 알 수 있다. 과학 과목에서 자기 단원이 적절한 학년에서 교육되는지 검토하였고, 교과서의 내용을 분석하여 문제점과 대안을 제시하였다.

MR Fluid Jet Polishing 시스템을 위한 분사노즐 및 전자석 모듈 개발 (Development of an Injection Nozzle and an Electromagnet Module for a MR Fluid Jet Polishing System)

  • 이정원;조용규;하석재;신봉철;조명우
    • 한국생산제조학회지
    • /
    • 제21권5호
    • /
    • pp.767-772
    • /
    • 2012
  • Generally, abrasive fluid jet polishing system has been used for polishing of complex shape or freeform surface which has steep local slopes. In the system, abrasive fluid jet is injected through a nozzle at high pressure; however, it is inevitable to lose its coherence as the jet exits a nozzle. This problem causes incorrect polishing results because of unstable and unpredictable workpiece material removal at the impact zone. In order to solve this problem, MR fluid jet polishing method has been developed using a mixture of abrasive and MR fluid which can maintain highly collimated and coherent jet by applied magnetic field. Thus, in this study, an injection nozzle and an electromagnetic module, most important parts in the MR polishing system, were designed and verified by magnetic field and flow analysis. As the results of experiments, it can be confirmed that stable fluid jets for polishing were generated since smooth W-shapes and uniform spot size were observed regardless of standoff distance changes.

전자계 결합특성 및 대류 경계조건을 적용한 수치 해석적 열전달 해석 (Numerical Heat Transfer Analysis applying Coupled Electromagnetic Characteristics and Convection Boundary Condition)

  • 김창기;김상훈;정상용
    • 전기전자학회논문지
    • /
    • 제13권3호
    • /
    • pp.55-61
    • /
    • 2009
  • 본 논문에서는 정열계 해석을 위해 유한요소법(F.E.M)을 이용한 열전달 해석 기법에 대하여 다루고 있다. 특히, 열전달의 주요 쟁점인 혼합 경계조건을 띄는 대류 경계조건을 자계 문제와 비교하여 갤러킨법(Galerkin Method)으로 정식화하였다. 그리고 해의 신뢰성을 확보하기 위해 자계 해석을 통해 열원이 되는 손실을 구한 후, 반복적 알고리즘을 통해 에너지 평형 방정식을 만족하는 열전달 계수를 산정하여 열전달 문제를 고려하는 자계-열계 결합 해석을 하였다. 마지막으로, 측정치와 비교하여 제안된 방법의 효용성을 증명하였다.

  • PDF

MR 유체 제트 연마를 이용한 광학유리의 가공성능 (Machining Performance of Optical Glass with Magnetorheological Fluid Jet Polishing)

  • 김원우;김욱배
    • 한국정밀공학회지
    • /
    • 제28권8호
    • /
    • pp.929-935
    • /
    • 2011
  • As a deterministic finishing process for the optical parts having complex surface, machining performance of the magnetorheological(MR) fluid jet polishing of optical glass are studied and compared with a general water jet polishing. First, design of the jet polishing system which has the special electromagnet-nozzle unit for stabilizing the slurry jet based on MR fluid and the change of jet shape as magnetic field is applied are explained. Second, for the BK7 glass, machining spot and its cross section profile are analyzed and the unique effect of MR fluid jet polishing is shown. Third, both material removal depth and surface roughness are explored in order to investigate the polishing performance of MR fluid jet. With the same ceria abrasives and amount in the polishing slurries, MR fluid jet shows superior machining performance compared to water jet and the difference of material removal mechanism and its resulting performance are described.

자력을 이용한 하이브리드 고무 마운트 (Hybrid Rubber Mount by Using Magnetic Force)

  • 안영공;김동우
    • 한국소음진동공학회논문집
    • /
    • 제24권3호
    • /
    • pp.236-246
    • /
    • 2014
  • This paper presents a hybrid rubber mount with magnet to isolate effectively the vibration in vehicle, forklift, and so on. The hybrid mount does not have any controller of the magnetic force. Dynamic stiffness of the mount is reduced by only magnetic suction according to the applied magnetic field and damping coefficient increased. Performance of conventional rubber mount with using electromagnet has been investigated by MTS Tester. The governing equation of the hybrid mount was derived and verified by comparison with experimental and theoretical results. The equation can be used practically and usefully in the design of the mount and analysis of the mounting system. The hybrid mount provides excellent performance in vibration isolation and its structure is very simpler than active with controller and a semi-active mount with a functional fluid. Furthermore, production cost of the mount using permanent magnets is very lower than that of the active mount with electromagnets. Therefore, commercial potential of the mount is very high.

가정 자로법에 의한 전자기 흡입력의 촉각궤환장치의 최적설계 (An Optimum Design of the Tactile Feedback Device using the Electromagnetic Attractive Force by the Probable Flux Paths Method)

  • 이정훈;장건희;최동훈;박종오;이종원
    • 제어로봇시스템학회논문지
    • /
    • 제4권4호
    • /
    • pp.464-478
    • /
    • 1998
  • In teleoperation, it is important for an operator to feel as if he really were in a distant place. To realize this objective, the various information from a remote site must be presented to the operator. Even though tactile information is very important to efficiently execute a task, it is not yet sufficiently provided for the operator. In this paper, we propose the new mechanism that can provide the more dexterous tactile information to the operator This device utilizing the electromagnetic force is designed to be compact and light enough to be attached to the fingerpad, and designed to be controlled continuously. The magnetic circuit is derived by the probable flux paths method in order to take forces at any given dimension. An optimization technique is also proposed to maximize the tactile force that humans can perceive under the same conditions. The objective function is formulated as maximizing displacements indented on the fingerpad, considering the mechanism of human tactile perception. The optimization formulation is subject to the geometric and rising temperature constraints in the coil. It is demonstrated that, by optimization, the tactile force increases by 24%, compared with that obtained from the initial design.

  • PDF

초등학생의 인지 수준에 따른 과학의 본성에 대한 명시적 교수 효과 분석 (The Effects of Explicit Instruction about Nature of Science by Elementary School Student's Cognitive Level)

  • 방미정;김효남
    • 한국초등과학교육학회지:초등과학교육
    • /
    • 제29권3호
    • /
    • pp.277-291
    • /
    • 2010
  • In this study, we investigated the effects of explicit instruction about nature of science by elementary school students' cognitive level. Participants were six classes, 187 sixth graders at elementary schools in Daegu. Three classes were assigned to control groups and the other classes to treatment groups. Control groups were provided normal instructions and treatment groups were provided instructions integrated with nature of science about chapter 'electromagnet' for 9 class periods. The results of this study were as follow. Both low-cognitive level students and high-cognitive level students in the treatment groups are improved in understanding about nature of science by the explicit instructions about nature of science. Especially, the high-cognitive level students had more improvement than the low-cognitive level students in understanding about nature of science by the explicit instructions about nature of science. There were no significant differences between the test scores of the two groups in the science interest sub-domain of the science-related affective domain. But, there were significant differences between the test scores of the two groups in curiosity and open-mindedness of the scientific attitudes sub-domain of the science-related affective domain.

  • PDF

전자기 접촉기의 과도회복전압 특성에 대한 연구 (The study on the characteristics of transient recovery voltage of electromagnetic contactor)

  • 김근용;류재남
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.834-835
    • /
    • 2008
  • 전자기 접촉기(electromagnetic contactor)는 교류 또는 직류 저압의 전로(電路)에 사용되는 부하개폐기의 한 종류로 전자석 코일(electromagnet coil)의 여자(勵磁)에 의하여 주 접촉자를 개폐시키는 기기이다. 일반적으로 전자기 접촉기는 단락전류를 차단하도록 설계되어 있지는 않다. 그러므로 설치 시 적절한 단락 보호가 이루어져야 하며, 반드시 접촉기의 일부분일 필요는 없다. 차단기와 퓨즈 등을 단락보호장치(SCPD, Short-Circuit Protective Device)로 많이 사용한다. 전자기 접촉기는 특히 고빈도 개폐를 목적으로 사용되는 개폐기로, 농형모터(squirrel-cage motors)의 시동, 운전 중의 정지, 플러깅(plugging, 모터가 운전하고 있는 중에 모터의 1차측 접속을 역으로 바꿔서 모터를 급격히 정지시키거나 역 회전시키는 것) 및 인칭(inching, 모터를 짧은 기간 동안 1회 또는 반복 여자해서 피동기구를 조금 이동시키는 것)에 많이 쓰인다. 이러한 기기의 개폐특성을 평가하기 위한 부하는 과도회복 전압의 진동 주파수(oscillatory frequency)와 진폭율 ${\gamma}$를 얻을 수 있도록 조정되어야 한다. 본 논문에서는 고빈도 개폐능력을 갖고 있는 전자기 접촉기의 과도회복 전압 특성과 그 특성을 얻기 위한 부하 회로의 조정방법에 대해 고찰하였다.

  • PDF