• Title/Summary/Keyword: Electrolyte

Search Result 3,969, Processing Time 0.037 seconds

A Study on the Separation of Electrolyte from Amino Acid Solution through Electrodialysis (전기투석법을 이용한 아미노산으로부터 전해질 분리정제에 관한 연구)

  • 김석곤;한정우;김한성;전경용;조영일
    • Membrane Journal
    • /
    • v.4 no.3
    • /
    • pp.163-170
    • /
    • 1994
  • The separation of inorganic salt from amino acid solution using was performed electrodialysis. In order to review the availability of electrodialysis using isoelectric point of amino acid as a bio-separation technique, electrodialysis stacks were designed using ion exchange membrane. Separation of NaCl from amino acid solution was performed in the condition similar to amino acid fermentation process. To obtain otimum conditions of separation, leakage of amino acid depending of pH and limiting current density were measured. On the basis of optimum condition, removal of NaCl and leakage of amino acid were investigated quantitatively in batch and continuous process, and current efficiencies were also obtained. As a result of batch experiment for 11 hours each amino acid solution, removal efficiencies of NaCl were in the ranges of 96.1~96.2%. Amino acid leakage rate of glycine, methionine, alanine were 2.5, 1.7, 2.0% respectively. Current efficiencies were in the ranges of 44.5~44.6%. As a result of continuous experiment in various flow rate of each amino acid solution, it took 120 ~ 150 min to reach to steady state. Removal efficiency of NaCl was increased as the flow rate was decreased, but current efficiency was decreased. At the steady states, there were no leakage of amino acid.

  • PDF

Preparation and Characterization of Proton Conducting Crosslinked Membranes Based On Poly(vinyl chloride) Graft Copolymer (Poly(vinyl chloride) 가지형 공중합체를 이용한 수소이온 전도성 가교형 전해질막의 제조와 분석)

  • Kim, Jong-Hak;Koh, Jong-Kwan;Choi, Jin-Kyu;Park, Jung-Tae;Koh, Joo-Hwan
    • Membrane Journal
    • /
    • v.18 no.4
    • /
    • pp.261-267
    • /
    • 2008
  • A graft copolymer consisting of poly(vinyl chloride) (PVC) backbone and poly(hydroxyethyl acrylate) (PHEA) side chains was synthesized via atom transfer radical polymerization (ATRP). Direct initiation of the secondary chlorines of PVC facilitates grafting of hydrophilic PHEA monomer. This graft copolymer, i.e. PVC-g-PHEA was cross-linked with sulfosuccinic acid (SA) via the esterification reaction between -OH of the graft copolymer and -COOH of SA, as confirmed by FT-IR spectroscopy. Ion exchange capacity (IEC) continuously increased to 0.87meq/g with increasing concentrations of SA, due to the increasing portion of charged groups in the membrane. However, the water uptake increased up to 20.0wt% of SA concentration above which it decreased monotonically. The membrane also exhibited a maximum proton conductivity of 0.025 S/cm at 20.0 wt% of SA concentration, which is presumably due to competitive effect between the increase of ionic sites and the crosslinking reaction.

Clinical study on safety of Scolopendrid aquacupuncture (오공약침의 안전성에 대한 임상적 연구)

  • So, Ki-suk;Choi, Hoi-kang;Park, So-young;Koh, Kang-hun;Kim, Sung-nam;Lee, Ok-ja;Yun, Min-young;Mun, Hyung-chul;Kim, Sung-chul;Lee, Jung-hun;Na, Won-kyung
    • Journal of Acupuncture Research
    • /
    • v.21 no.1
    • /
    • pp.136-148
    • /
    • 2004
  • Objective: Recently scolopendrid aquacupuncture has been a good effect on pain control but it has not been known about clinical safety. So, In order to prove the clinical safety of scolopendrid aquacupuncture, We have observed the physical reac-tion and clinical pathology test after scolopendrid aquacupuncture treatment. Methods: We analyzed physical reaction and clinical pathology test before and after Scolopendrid aquacupuncture treatment of 30 patients suffering from pain, who admitted department of Acupunture and Moxibustion, College of Oriental Medicine, Won-Kwang University Kwangju hospital. Results & Conclusions: The results were summarized as follows. 1) The distribution of sex was 14 males and 16 females, and the average of patients age was 46.2 years. 2) The distribution of symptom was lumbago, lumbago with radiating pain, nuchal pain and knee joint pain. 3) In the 30 patients treated with Scolopendrid aquacupuncture, hematologic test did not show remarkable change. 4) In the 30 patients treated with Scolopendrid aquacupuncture, Liver function test(AST, ALT, ALP) showed a slight decrease on the contrary, and abnormal rate showed a decrease of 1.0%(from 3.3% to 2.3%) compared with previous study. 5) In the 30 patients treated with Scolopendrid aquacupuncture, Renal function test(BUN, Cr) and abnormal rate(from 2.5% to 2.0%) showed a slight decrease on the contrary. 6) In the 30 patients treated with Scolopendrid aquacupuncture. Electrolyte were normal range before & after treatment. 7) In the results of the Urine analysis of 30 patients, Leukocyte, Protein. Glucose, Keton, Bilirubin, U-bilinogen were not detected before and after Scolopendrid aquacupuncture treatment, and the rest almost made no difference. 8) In the Physical reactions, all of the patients complained of pain of body partially, only one patient showed reddish and itch, but symptoms like those were entirely disappeared within 24 hours and whole body pain, swelling, headache, dizziness, fatigue and nausea was not observed.

  • PDF

Effect of Rapid Rotating Shift Work on the Urinary $Na^+,K^+,Cl^-$ (빠른 교대근무가 요중 $Na^+,K^+,Cl^-$의 배설에 미치는 영향)

  • Min, Soon;Moon, Dae-Soo;Im, Wook-Bin
    • Journal of Korean Academy of Nursing
    • /
    • v.28 no.4
    • /
    • pp.869-880
    • /
    • 1998
  • In order to investigate of the effects of rapid rotating shift work on physiological stress, the activities of urinary Na$^{+}$, $K^{+}$, Cl$^{[-10]}$ were measured in 14 rotational shift nurses, during day shifts(8AM-4PM, n=4), evening shifts(4PM-l2MN, n=5), and night shifts(12MN-8AM, n=5) in hospital twenty students attending nursing college a used as a control group. Urine specimens were collected in 30 minutes before and after work on the second day of shift work. In day shift nurses, Na$^{+}$ activity was 137mM at 8AM and increased to 206mM at 4PM, whereas $K^{+}$ activity was 42mM at 8AM and no significant change at 4PM. Cl$^{[-10]}$ activity was changed from 234mM to 344mM at 4PM at 8AM. In the evening shift, Na$^{+}$ activity was 117mM at 4PM and 140mM at 12MN, $K^{+}$ activity was 22mM and 32mM, respectively. Cl$^{[-10]}$ activity was 169mM and changed to 270mM. During the night shift, Na$^{+}$ activity was 128mM at 12MN and changed to 161mM at 8AM, $K^{+}$ activity was 42mM at 12MN and 8AM, and Cl$^{[-10]}$ activity was from 303mM and changed to 355mM. In general, the urinary ion activities seemed to increase after work, however there were no significant changes in ion activities except the Na$^{+}$ increase in day shift. The mean of the activities of $K^{+}$ and Cl$^{[-10]}$ before and after work during the day and night shift were significantly higher than those in control group (P<0.05). $K^{+}$ activities were also higher than that of evening shift(P<0.05). However, there was no difference in Na$^{+}$ activity among the control group and three shifts. There was a significant relationship among urinary Na$^{+}$, Cl$^{[-10]}$ and $K^{+}$ in the control group and rotating shift nurses except between Na$^{+}$ and $K^{+}$ in shift. The relationship between Na$^{+}$ and Cl$^{[-10]}$ was low in shift work and there was no significant relationship between Na$^{+}$ and $K^{+}$ in shift, suggesting that the active regulation $K^{+}$ and/or Na$^{+}$ in response to stress upon the shift work disruped the ratio of urinary Na$^{+}$ to $K^{+}$ and also lowered the relationship between $K^{+}$ and Cl$^{[-10]}$ . These results suggest that nurses working the day shift were overloaded and under stress, and the night shift interfered with the physiological rhythm of the nurses.red with the physiological rhythm of the nurses.

  • PDF

Preparation and characterization of La0.8Sr0.2Ga0.8Mg0.1Co0.1O3-δ electrolyte using glycine-nitrate process (Glycine nitrate process로 합성된 La0.8Sr0.2Ga0.8Mg0.1Co0.1O3-δ 전해질의 제조 및 특성평가)

  • Ok, Kyung-Min;Kim, Kyeong-Lok;Kim, Tae-Wan;Kim, Dong-Hyun;Park, Hee-Dae;Sung, Youl-Moon;Park, Hong-Chae;Yoon, Seog-Young
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.23 no.1
    • /
    • pp.37-43
    • /
    • 2013
  • Conductivity of LSGMC materials were affected by secondary phase segregation, composition and synthetic route. $La_{0.8}Sr_{0.2}Ga_{0.8}Mg_{0.1}Co_{0.1}O_{3-{\delta}}$ (LSGMC) powders were prepared using the glycine nitrate process to produce high surface area and compositionally homogeneous powders. The powders were synthesized with different 0.5, 1, 1.5, 2, 2.5 of glycine/cation molar ratios. A single perovskite phase from the synthesized powders was characterized with X-ray diffraction patterns. The obtained sintered pellets showed the dense grain microstructure. In case of 1.5 molar ratio, its density was higher than the others. The electrical conductivity measured at $800^{\circ}C$ was observed to be 0.131 $Scm^{-1}$. In addition, the linear thermal expansion behavior was indicated between $25^{\circ}C$ and $800^{\circ}C$.

Cu-Filling Behavior in TSV with Positions in Wafer Level (Wafer 레벨에서의 위치에 따른 TSV의 Cu 충전거동)

  • Lee, Soon-Jae;Jang, Young-Joo;Lee, Jun-Hyeong;Jung, Jae-Pil
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.21 no.4
    • /
    • pp.91-96
    • /
    • 2014
  • Through silicon via (TSV) technology is to form a via hole in a silicon chip, and to stack the chips vertically for three-dimensional (3D) electronics packaging technology. This can reduce current path, power consumption and response time. In this study, Cu-filling substrate size was changed from Si-chip to a 4" wafer to investigate the behavior of Cu filling in wafer level. The electrolyte for Cu filling consisted of $CuSO_4$ $5H_2O$, $H_2SO_4$ and small amount of additives. The anode was Pt, and cathode was changed from $0.5{\times}0.5cm^2$ to 4" wafer. As experimental results, in the case of $5{\times}5cm^2$ Si chip, suitable distance of electrodes was 4cm having 100% filling ratio. The distance of 0~0.5 cm from current supplying location showed 100% filling ratio, and distance of 4.5~5 cm showed 95%. It was confirmed good TSV filling was achieved by plating for 2.5 hrs.

Electrochemical Characteristics of Pt/PEM/Pt-Ru MEA for Water Electrolysis (수전해용 Pt/PEM/Pt-Ru MEA의 전기화학적 특성)

  • Kweon, Oh-Hwan;Kim, Kyung-Eon;Jang, In-Young;Hwang, Yong-Koo;Chung, Jang-Hoon;Moon, Sang-Bong;Kang, An-Soo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.19 no.1
    • /
    • pp.18-25
    • /
    • 2008
  • The membrane electrode assembly(MEA) was prepared by a nonequilibrium impregnation- reduction (I-R) method. Nafion 117 and covalently cross-linked sulfonated polyetherether with tungsto- phosphoric acid (CL-SPEEK/TPA30) prepared by our laboratory, were chosen as polymer electrolyte membrane(PEM). $Pt(NH_3)_4Cl_2$, $RuCl_3$ and reducing agent $(NaBH_4)$ were used as electrocatalytic materials. Electrochemical activity surface area(ESA) and specific surface area(SSA) of Pt cathodic electrode with Nafion 117 were $22.48m^2/g$ and $23.50m^2/g$ respectively under the condition of 0.8 M $NaBH_4$. But Pt electrode prepared by CL-SPEEK/TPA30 membrane exhibited higher ESA $23.46m^2/g$ than that of Nafion 117. In case of Pt-Ru anodic electrode, the higher concentration of Ru was, the lower potential of oxygen reduction and region of hydrogen desorption was, and Pt-Ru electrode using 10 mM $RuCl_3$ showed best properties of SSA $34.09m^2/g$ with Nafion 117. In water electrolysis performance, the cell voltage of Pt/PEM/Pt-Ru MEA with Nafion 117 showed cell property of 1.75 V at $1A/cm^2$ and $80{\circ}C$. On the same condition, the cell voltage with CL-SPEEK/TPA30 was the best of 1.73 V at $1A/cm^2$.

Corrosion Resistance of Blended Concrete and Its Application to Crack Healing (혼합 콘크리트의 부식 저항성과 균열 치유 적용)

  • Lee, Chang-Hong;Kim, Tae-Sang;Song, Ha-Won
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.6
    • /
    • pp.689-696
    • /
    • 2009
  • In this study, electro-deposition method was applied to heal cracks in various blended concrete. The performance of the method was indirectly monitored by measuring impressed voltage, electrolyte, galvanic current monitoring, linear polarization resistance, and directly by image analysis of the cracks. The indirect and direct monitoring values are compared to develop guidelines for relating the indirect measures to actual crack healing. As a result, It was found that impressed voltage was convergence to 2.9V after 20000 minutes. From the galvanic current test results of artificial crack healing, the corrosion resistance showed that the order of 0.4 $>$ 0.6 $>$ 0.5 water to cement ratio. Furthermore, in view of binder, the corrosion resistance order was calculated OPC $>$ 60%GGBS $>$ 10%SF $>$ 30%PFA. Finally, It was found that 76.47% of healed crack surface calculated from the artificial crack healing technique using electrochemical deposition method.

Enhancement of Conversion Efficiency of Dye-Sensitized Solar Cells(DSSCs) by Nb2O5 Coating on TiO2 Electrode (Nb2O5 코팅에 따른 염료감응 태양전지의 효율 향상)

  • Park, Seonyeong;Jung, Sukwon;Kim, Jung Hyeun
    • Korean Chemical Engineering Research
    • /
    • v.48 no.4
    • /
    • pp.506-510
    • /
    • 2010
  • Electron recombinations in electrolyte solution reduce light-to-energy conversion efficiency at the nanoporous electrode surface of dye sensitized solar cells. In this study, we improved the conversion efficiency using an energy barrier at the nanoporous electrode surface to control the recombination process. The energy barrier was formed by coating nanoporous $TiO_2$ electrode with $Nb_2O_5$ material. We investigated the influence of energy barrier on the cell efficiency depending on the coating thickness. Nanoporous $TiO_2$ electrode was coated about 5 nm thickness by 12 times coatings, and so the coating layer was grown about 0.417 nm for every time. Enhancement of conversion efficiency from 2.55% to 4.25% was achieved at 0.834 nm coating thickness, and it was believed as the optimum thickness for minimizing the electron recombination process in our experimental system.

Electrochemical Performance on the H3BO3 Treated Soft Carbon modified from PFO as Anode Material (음극소재로 PFO에서 개질된 붕산처리 소프트 카본의 전기화학적 성능)

  • Lee, Ho Yong;Lee, Jong Dae
    • Korean Chemical Engineering Research
    • /
    • v.54 no.6
    • /
    • pp.746-752
    • /
    • 2016
  • In this study, soft carbon was prepared by carbonization of carbon precursor (pitch) obtained from PFO (pyrolysis fuel oil) heat treatment. Three carbon precursors prepared by the thermal reaction were 3903 (at $390^{\circ}C$ for 3 h), 4001 (at $400^{\circ}C$ for 1 h) and 4002 (at $400^{\circ}C$ for 2 h). After the prepared soft carbon was ground to a particle size of $25{\sim}35^{\circ}C$, the soft carbon was synthesised by the chemical treatment with boric acid ($H_3BO_3$). The prepared soft carbon were analysed by XRD, FE-SEM and XPS. Also, the electrochemical performances of soft carbon were investigated by constant current charge/discharge test, cyclic voltammetry and impedance tests in the electrolyte of $LiPF_6$ dissolved inorganic solvents (EC:DMC=1:1 vol%+VC 3 wt%). The coin cell using soft carbon of $25{\sim}35^{\circ}C$ with 3903 soft carbon ($H_3BO_3$/Pitch=3:100 in weight) has better initial capacity and efficiency (330 mAh/g, 82%) than those of other coin cells. Also, it was found that the retention rate capability of 2C/0.1C was 90% after 30 cycles.