DOI QR코드

DOI QR Code

Corrosion Resistance of Blended Concrete and Its Application to Crack Healing

혼합 콘크리트의 부식 저항성과 균열 치유 적용

  • 이창홍 (한국건설기술연구원) ;
  • 김태상 (한국건자재시험연구원) ;
  • 송하원 (연세대학교 사회환경시스템공학부)
  • Published : 2009.12.31

Abstract

In this study, electro-deposition method was applied to heal cracks in various blended concrete. The performance of the method was indirectly monitored by measuring impressed voltage, electrolyte, galvanic current monitoring, linear polarization resistance, and directly by image analysis of the cracks. The indirect and direct monitoring values are compared to develop guidelines for relating the indirect measures to actual crack healing. As a result, It was found that impressed voltage was convergence to 2.9V after 20000 minutes. From the galvanic current test results of artificial crack healing, the corrosion resistance showed that the order of 0.4 $>$ 0.6 $>$ 0.5 water to cement ratio. Furthermore, in view of binder, the corrosion resistance order was calculated OPC $>$ 60%GGBS $>$ 10%SF $>$ 30%PFA. Finally, It was found that 76.47% of healed crack surface calculated from the artificial crack healing technique using electrochemical deposition method.

최근 들어 균열 치유 향상도의 가속화 방안으로서 전기 화학적 전착 기법을 활용한 인공 균열 치유방법에 관한 실험연구가 수행되고 있다. 이 연구에서는 고내구성 콘크리트의 설계 및 유지관리를 위한 방안으로서 혼합콘크리트의 사용에 따른 인공 균열 치유방법상의 부식방식 모니터링의 비교 및 균열 치유향상도의 분석을 수행하였다. 이를 위해 철근콘크리트내로의 가압전류의 특성분석, 가용 전해질의 특성분석, 갈바닉 전류 모니터링, 선형분극저항측정 비교, 균열 치유 전/후의 치유향상도의 사진화상분석등을 통해 혼합 콘크리트의 인공 균열 치유기법 적용에 따른 치유 향상도를 실험적 연구로서 수행하였다. 실험결과로부터, 인공균열치유에 의한 가압전류 측면에서 20,000 min의 통전시간에 따라 점차적으로 가압전압값이 증가하면서 2.9 V로 물/시멘트비에 관계없이 수렴하고 있음을 알수 있었고, 갈바닉전류 모니터링에 따른 부식지연성은 W/C의 경우에 0.4 $>$ 0.5 $>$ 0.6의 순서로, 결합재별 비교에 있어서는 OPC $>$ 60%GGBS $>$ 10%SF $>$ 30% PFA의 순서로 나타남을 알 수 있었다. 한편 전기화학적 전착기법에 의한 치유후 기존 균열면적의 76.47%가 치유됨을 확인하였다.

Keywords

References

  1. Song, H. W., Lee, C. H., and Ann, K. Y., “Factors Influencing Chloride Transport in Concrete Structures Exposed to Marine Environment,” Cement and Concrete Composites, Vol. 30, No. 2, 2008, pp. 113-121 https://doi.org/10.1016/j.cemconcomp.2007.09.005
  2. Song, H. W., Pack, S. W., Lee, C. H., and Kwon, S. J., ”Service Life Prediction of Concrete Structures under Marine Environment Considering Coupled Deterioration,” International Journal for Restoration and Building Monuments, Vol. 12. No. 4, 2006, pp. 265-284
  3. Song, H. W., Saraswathy, V., Muralidharan, S., Lee, C. H., and Thangavel, K., “Role of Alkaline Nitrites on the Corrosion Performance of Steel in Composite Cements,” Journal of Applied Electrochemistry, Vol. 39. No. 1, 2009, pp. 15-22 https://doi.org/10.1007/s10800-008-9632-1
  4. Song, H. W., Lee, C. H., Lee, K. C., and Saraswathy, V., “Chloride Penetration Resistance of Ternary Blended Concrete,” Bulletin of Electrochemistry, In Press
  5. 송하원, 이창홍, 이근주, 김재환, 안기용, “삼성분계 혼합 콘크리트의 염화물 침투 저항성 및 내구성에 대한 고찰,” 콘크리트학회 논문집, 20권, 4호, 2008, pp. 439-449
  6. BRE Centre for Concrete Construction, “Guide to the Maintenance, Repair and Monitoring of Reinforced Concrete Structures,” DME Report, No. 4, Watford, Building Research Establishment, UK, 2001, pp. 1-158
  7. ACI Commmittee 357, “Guide for Design and Construction of Fixed Off-shore Concrete Sructures,” Manual of Concrete Practice, Part 4, American Concrete Institute, Detroit USA, 1994
  8. Banfill, P. F. G., “Re-alkalization of Carbonated Concreteeffect on Concrete Properties,” Construction and Building Materials. Vol. 11, No. 4, 1997, pp. 255-258 https://doi.org/10.1016/S0950-0618(97)00045-7
  9. Dehwah, H. A. F., Maslehnddin, M., and Austin, S. A., “Effect of Cement Alkalinity on Pore Solution Chemistry and Chloride-induced Reinforcement Corrosion,” ACI Material Journal, Vol. 99, No. 5, 2002, pp. 27-233
  10. Bishnoi, S. and Uomoto, T., “Strain-temperature Hysteresis in Concrete under Cyclic Freeze-thaw Conditions,” Cement Concrete Composites, Vol. 30, No. 5, 2008, pp. 374-380 https://doi.org/10.1016/j.cemconcomp.2008.01.005
  11. Ghafoori, N., Diawara, H., and Beasley, S., “Resistance to External Sodium Sulfate Attack for Early-opening-to-traffic Portland Cement Concrete,” Cement Concrete Composites, Vol. 30, No. 5, 2008, pp. 444-454 https://doi.org/10.1016/j.cemconcomp.2007.05.003
  12. ACI Committee report, “Causes Evaluation and Repair of Cracks in Concrete Structures,” ACI Journal, No. 2241, R-84, 1984, pp. 211-230
  13. Edvardsen, C., “Water Permeability and Autogenous Healing of Cracks in Concrete,” ACI Material Journal, Vol. 96. No. 4, 1999, pp. 448-455
  14. Ryu, J. S. and Otsuki, N., “Crack Closure of Reinforced Concrete by Electro Deposition Technique,” Cement and Concrete Research, Vol. 32, No. 1, 2002, pp. 159-164 https://doi.org/10.1016/S0008-8846(01)00650-0
  15. Reinhardt, H. W. and Jooss, M., “Permeability and Selfhealing of Cracked Concrete as a Function of Temperature and Crack Width,” Cement and Concrete Research, Vol. 33, No. 4, 2003, pp. 981-985 https://doi.org/10.1016/S0008-8846(02)01099-2
  16. Ryu, J. S. and Otsuki, N., “Use of Electro Deposition for Repair of Concrete with Shrinkage Cracks,” Journal of Metals and Civil Engineering, Vol. 3, No. 3, 2001, pp. 136-142 https://doi.org/10.1061/(ASCE)0899-1561(2001)13:2(136)
  17. Ryu, J. S. and Otsuki, N., “Electro Deposition as a Rehabilitation Method for Concrete Materials,” Journal of Civil Engineering, Vol. 31, No. 1, 2004, pp. 776-781 https://doi.org/10.1139/l04-044
  18. Ryu, J. S. and Otsuki, N., “Application of Electrochemical Techniques for the Control of Cracks and Steel Corrosion in Concrete,” Journal of Applied Electrochemistry, Vol. 32, No. 6, 2002, pp. 635-639 https://doi.org/10.1023/A:1020143229044
  19. Song, H. W., Lee, C. H., and Ann, K. Y., “Development of Chloride Binding Capacity in Cement Pastes and the Influence of the pH of Hydration Products,” Canadian Journal of Civil Engineering, Vol. 35, No. 2, 2008, pp. 1427-1434 https://doi.org/10.1139/L08-089
  20. Ann, K. Y., “Enhancing the Chloride Threshold Level for Steel Corrosion in Concrete,” Doctoral thesis, Imperial College, 2005, pp. 1-226
  21. Lee, C. H., “Chloride Induced Corrosion Resistance of Blended Concrete and Its Application to Crack Healing,” Doctoral thesis, Yonsei Univ., 2009, pp. 1-242
  22. Ann, K. Y. and Song, H. W., “Chloride Threshold Level for Corrosion of Steel in Concrete,” Corrosion Science, Vol. 49, No. 11, 2007, pp. 4113-4133 https://doi.org/10.1016/j.corsci.2007.05.007
  23. Saraswathy, V., Muralidharan, S., Lee, C. H., and Song, H. W., “Corrosion Leaching Studies on Blended Copper Slag in Concrete,” Journal of Electrochemical SCI, In Revision
  24. Song, H. W., Lee, K. C., and Lee, C. H., “Corrosion of Steel in Mortars Containing OPC, PFA, GGBS and SF with Chloride in Cast,” Proceeding of the Fourth Civil Engineering Conference in the Asian Region (4th CECAR), Vol. 1, No. 1, 2007, pp. 71-78
  25. Song, H. W., Saraswathy, V., Muralidharan, S., Lee, C. H., and Thangavel, K., “Evaluation of Chloride Tolerable Limit of Steel in Composite Cement Environments by Electrochemical Route,” Journal of Electrochemistry, In Press