• Title/Summary/Keyword: Electroless-plating

Search Result 440, Processing Time 0.025 seconds

pH Effects on Properties of Electroless Nickel Plating on Injected ABS by MmSH (순간금형가열법에 의해 제작된 ABS의 pH 변화에 따른 무전해 Ni 도금 특성)

  • Song Tae-Hwan;Park So-Yeon;Lee Jong-Kwon;Ryoo Kul-Kul;Lee Yoon-Bae
    • Proceedings of the KAIS Fall Conference
    • /
    • 2004.06a
    • /
    • pp.69-71
    • /
    • 2004
  • 새로운 기술인 Momentary mold surface heating(MmSH)은 기존의 사출성형법으로 제조된 Acrylonitrile Butadiene Styrene(ABS)의 단점을 개선한 사출성형법이다. MmSH로 제조된 ABS와 기존의 사출성형법으로 제조된 ABS의 도금특성을 도금욕 pH 변화에 따라 연구하였다. Sodium hypophosphite가 첨가된 무전해 Ni 도금욕의 PH가 증가할수록 도금 두께가 증가하였고 기존의 사출성형법으로 제조된 ABS의 경우 pH 5이상에서 4B의 밀착력을 가졌다. MmSH로 제조된 ABS의 경우 pH 6이상에서 5B인 12.3N/25mm 이상의 가장 우수한 밀착력을 나타내었다.

  • PDF

Ni Coating Characteristics of High K Capacitor Ceramic Powders

  • Park, Jung-Min;Lee, Hee-Young;Kim, Jeong-Joo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.339-339
    • /
    • 2007
  • Metal coating on ceramic powder has long been attracting interest for various applications such as superconductor where the brittle nature of high temperature ceramic superconductor was complemented by silver coating and metalloceramics where mechanical property improvement was achieved via electroless plating. More recently it has become of great interest in embedded passive device applications since metal coating on ceramic particles may result in the enhancement of the dielectric properties of ceramic-polymer composite capacitors. In our study, nickel ion-containing solution was used for coating commercial capacitor-grade $BaTiO_3$ powder. After filtering process, the powder was dried and heat-treated in 5% forming gas at $900^{\circ}C$. XRD and TEM were utilized for the observation of crystallization behavior and morphology of the particles. It was found that the nickel coating characteristics were strongly dependent on the several parameters and processing variables, such as starting $BaTiO_3$ particle size, nickel source, solution chemistry, coating temperature and time. In this paper, the effects of these variables on the coating characteristics will be presented in some detail.

  • PDF

Fabrication of three-dimensional electrical patterns by swollen-off process: An evolution of the lift-off process

  • Mansouri, Mariam S.;An, Boo Hyun;Shibli, Hamda Al;Yassi, Hamad Al;Alkindi, Tawaddod Saif;Lee, Ji Sung;Kim, Young Keun;Ryu, Jong Eun;Choi, Daniel S.
    • Current Applied Physics
    • /
    • v.18 no.11
    • /
    • pp.1235-1239
    • /
    • 2018
  • We present a novel process to fabricate three-dimensional (3D) metallic patterns from 3D printed polymeric structures utilizing different hygroscopic swelling behavior of two different polymeric materials. 3D patterns are printed with two different polymers as cube shape. The surface of the 3D printed polymeric structures is plated with nickel by an electroless plating method. The nickel patterns on the surface of the 3D printed cube shape structure are formed by removing sacrificial layers using the difference in the rate of hygroscopic swelling between two printing polymer materials. The hygroscopic behavior on the interfaced structure was modeled with COMSOL Multiphysics. The surface and electrical properties of the fabricated three-dimensional patterns were analyzed and characterized.

Micro-Structure and Magnetic Properties of Electroless Co-W-P Alloy Deposits Formed (무전해 Co-W-P 합금 도금 층의 미세구조와 자기적 특성)

  • Yun, Seong-Ryeol;Han, Seung-Hui;Kim, Chang-Uk
    • Korean Journal of Materials Research
    • /
    • v.10 no.1
    • /
    • pp.97-106
    • /
    • 2000
  • In these respects the purpose of this research is manufacturing Co-W-P alloy thin film on the corning glass 2948 by electroless plating method using $NaH_2PO_2H_2O$ (sodium hypophosphite) as a reductant, and analyzing deposition rate, alloy composition, microstructure, and magnetic characteristics at various pH's and temperatures. For Co-P alloy thin film, the reductive deposition reaction occurred only in basic condition, not in acidic condition. The deposition rate increased as the pH and temperature increased, and the optimum condition was found at the pH of 10 and the temperature of 8$0^{\circ}C$. Also magnetic characteristics was found to be most excellent at the pH of 9 and the temperature of 7$0^{\circ}C$, resulting in the coercive force of 870Oe and the squareness of 0.78. At this condition, the contents of P was 2.54% and the thickness of the film was 0.216$\mu\textrm{m}$. For crystal orientation, we could not observe fcc for $\beta$-Co. On the other hand, (1010), (0002), (1011) orientation of hcp for $\alpha$-Co was observed. We could confirm the formation of longitudinal magnetization from dominant (1010) and (1011) orientation of Co-P alloy. For Co-W-P alloy thin film, coercive force was 500Oe and squareness was 0.6. For crystal orientation, (0002) orientation of $\alpha$-Co was dominatly found. Then we could confirm the formation of perpendicular magnetization. The content of P was constant at 0.8$\pm$0.2% and the content of W increased as the concentration of Na$_2$WO$_4$increased. When the concentration of Na$_2$WO$_4$was 0.1mol/L, the composition of W was 20%. We observed the changes of magnetic characteristics and microstructure of thin film depositions of Co-W-P by the heat treatment. For heat treatment, the temperature was increased step by step to 10$0^{\circ}C$, 20$0^{\circ}C$, 30$0^{\circ}C$, and 40$0^{\circ}C$ and it took 1 hour at each step in the reductive condition of hydrogen gas. By the heat treatment, flatness of surface was improved, but there were no changes on the magnetic characteristics and the microstructures.

  • PDF

Characterization of FeCo Magnetic Metal Hollow Fiber/EPDM Composites for Electromagnetic Interference Shielding (FeCo 자성 금속 중공형 섬유 고분자 복합재의 전자파 차폐 특성 연구)

  • Choi, Jae Ryung;Jung, Byung Mun;Choi, U Hyeok;Cho, Seung Chan;Park, Ka Hyun;Kim, Won-jung;Lee, Sang-Kwan;Lee, Sang Bok
    • Composites Research
    • /
    • v.28 no.6
    • /
    • pp.333-339
    • /
    • 2015
  • Electromagnetic interference shielding composite with low density ($1.18g/cm^3$) was fabricated using electroless plated FeCo magnetic metal hollow fibers and ethylene propylene diene monomer (EPDM) polymer. Aspect ratio of the fibers were controlled and their hollow structure was obtained by heat treatment process. The FeCo hollow fibers were then mixed with EPDM to manufacture the composite. The higher aspect ratio of the magnetic metal hollow fibers resulted in high electromagnetic interference shielding effectiveness (30 dB) of the composite due to its low sheet resistance (30 ohm/sq). The enhanced electromagnetic interference shielding effectiveness was mainly attributed to the formation of conducting network over the percolation threshold by high aspect ratio of fibers as well as an increase of the reflection loss by impedance mismatch owing to low sheet resistance, absorption loss, and multiple internal reflections loss.

Electromagnetic Interference Shielding Behaviors of Electroless Nickel-loaded Carbon Fibers-reinforced Epoxy Matrix Composites (무전해 니켈도금된 탄소섬유강화 에폭시기지 복합재료의 전자파 차폐특성)

  • Hong, Myung-Sun;Bae, Kyong-Min;Lee, Hae-Seong;Park, Soo-Jin;An, Kay-Hyeok;Kang, Shin-Jae;Kim, Byung-Joo
    • Applied Chemistry for Engineering
    • /
    • v.22 no.6
    • /
    • pp.672-678
    • /
    • 2011
  • In this work, carbon fibers were electrolessly Ni-plated in order to investigate the effect of metal plating on the electromagnetic shielding effectiveness (EMI-SE) of Ni-coated carbon fibers-reinforced epoxy matrix composites. The surfaces of carbon fibers were characterized by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). Electric resistance of the composites was tested using a 4-point-probe electric resistivity tester. The EMI-SE of the composites was evaluated by means of the reflection and adsorption methods. From the results, it was found that the EMI-SE of the composites enhanced with increasing Ni plating time and content. In high frequency region, the EMI-SE didn't show further increasing with high Ni content (Ni-CF 10 min) compared to the Ni-CF 5 min sample. In conclusion, Ni content on the carbon fibers can be a key factor to determine the EMI-SE of the composites, but there can be an optimized metal content at a specific electromagnetic frequency region in this system.

Partial Oxidation of Methane in Palladium-silver Alloy Membrane Reactor (팔라듐-은 막반응기를 이용한 메탄의 부분산화반응)

  • Choi, Tae-Ho;Kim, Kwang-Je;Moon, Sang-Jin;Suh, Jung-Chul;Baek, Young-Soon
    • Applied Chemistry for Engineering
    • /
    • v.16 no.5
    • /
    • pp.641-647
    • /
    • 2005
  • The partial oxidation of methane is one of important processes for hydrogen production. As a membrane reactor, palladium-silver (Pd-Ag) alloy membrane prepared by electroless plating technique was employed for partial oxidation of methane. The experimental variables were reaction temperature, $O_2/CH_4$ mole ratio, $CH_4$ feed rate, and $N_2$ sweep gas flow rate. The methane conversions increased with the reaction temperatures in the range of 350 to $730^{\circ}C$. The highest methane conversion and CO selectivity were obtained at the condition of $O_2/CH_4$ mole ratio of 0.5 and $730^{\circ}C$ using commercially available nickel/alumina catalyst. The Pd-Ag membrane reactor showed higher methane conversions, 10~40% higher, compared to those in a traditional reactor.

Preparation of Electrochemically Stable and SERS Active Silica@Gold Microshell (전기화학 반응용 표면증강라만산란 활성 실리카@금 마이크로쉘의 제작)

  • Piao, Lilin;Lee, Jihye;Chung, Taek Dong
    • Journal of the Korean Electrochemical Society
    • /
    • v.16 no.1
    • /
    • pp.46-51
    • /
    • 2013
  • In order to monitor in situ electrochemical reaction we prepared the gold microshells on silica microspheres of $2{\mu}m$ in diameter which were able to not only work as electrodes but also surface enhanced Raman scattering (SERS) active substrates. Previously reported gold microshell using polystyrene as core material have a few serious problems, mostly coming from solubility in organic solvent, nonuniform distribution in size and toxicity of the polystyrene. Here we prepared silica core-gold microshell to obtain a strong SERS active platform benefitting from the physicochemical stability, uniformity and non-toxicity of silica. Varying the concentration of 3-aminopropyl triethoxysilane (APTES), the surfaces of silica beads were modified and the optimal condition was determined to be 1% APTES that made the SERS activity of gold microshell strongest. The gold microshells as made were characterized by homemade Micro-Raman system spectrometer, Field-Emission Scanning Electron Microscope.

Fabrication of various carbon nanostructures by using different catalysts (촉매에 따른 다양한 탄소나노구조체 합성)

  • Choi, Kang-Ho;Yoo, In-Joon;Lee, Hee-Soo;Lee, Kyu-Hwan;Lim, Dong-Chan
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.20 no.3
    • /
    • pp.133-140
    • /
    • 2010
  • Carbon fiber has many potential applications in a wide array of fields of solar cell, fuel cell, batteries, and polymer matrix composites due to an exceptional mechanical properties and chemical stability. In this study, the effects of catalysts on the property of carbon nanostructures grown on the carbon fiber were systematically investigated. The surface treatment of carbon fiber and catalysts synthesis for carbon nanostructures growth were carried out by one-pot ELP method and thermal CVD, respectively. The surface morphology and crystal structure of carbon nanostructures were examined using a field emission scanning electron microscope and transmission electron microscope. Depending on the type of catalysts and the molar ratio, various types of carbon nanostructures like carbon nanotube, carbon nanofilament, carbon nanospring and etc. were synthesized on the surface of carbon fibers surface.

Dispersion Characteristics of Magnetic Particle/Graphene Hybrid Based on Dispersant and Electromagnetic Interference Shielding Characteristics of Composites (분산제에 따른 자성금속 무전해도금 기반 그래핀 분산 특성 및 복합재의 전자파 차폐 특성 연구)

  • Lee, Kyunbae;Lee, Junsik;Jung, Byung Mun;Lee, Sang Bok;Kim, Taehoon
    • Composites Research
    • /
    • v.31 no.3
    • /
    • pp.111-116
    • /
    • 2018
  • In this paper, magnetic FeCoNi particles have been grown through electroless plating on the surface of graphene, and then this hybrid material has been dispersed by various surfactants to prepare films. The pyridine surfactant shows the highest dispersability and low surface resistance value (351 Ohm/sq) and the electromagnetic shielding ability at the frequency of 10 GHz. Specially, the evaporation of the pyridine during the drying process could be able to form the internal conductive network and high dispersion of FeCoNi on the surface of graphene.