Browse > Article
http://dx.doi.org/10.1016/j.cap.2018.06.001

Fabrication of three-dimensional electrical patterns by swollen-off process: An evolution of the lift-off process  

Mansouri, Mariam S. (Department of Mechanical and Materials Engineering, Khalifa University of Science and Technology)
An, Boo Hyun (Department of Mechanical and Materials Engineering, Khalifa University of Science and Technology)
Shibli, Hamda Al (Department of Mechanical and Materials Engineering, Khalifa University of Science and Technology)
Yassi, Hamad Al (Department of Mechanical and Materials Engineering, Khalifa University of Science and Technology)
Alkindi, Tawaddod Saif (Department of Mechanical and Materials Engineering, Khalifa University of Science and Technology)
Lee, Ji Sung (Department of Mechanical and Materials Engineering, Khalifa University of Science and Technology)
Kim, Young Keun (Department of Materials Science and Engineering, Korea University)
Ryu, Jong Eun (Department of Mechanical and Aerospace Engineering, North Carolina State University)
Choi, Daniel S. (Department of Mechanical and Materials Engineering, Khalifa University of Science and Technology)
Abstract
We present a novel process to fabricate three-dimensional (3D) metallic patterns from 3D printed polymeric structures utilizing different hygroscopic swelling behavior of two different polymeric materials. 3D patterns are printed with two different polymers as cube shape. The surface of the 3D printed polymeric structures is plated with nickel by an electroless plating method. The nickel patterns on the surface of the 3D printed cube shape structure are formed by removing sacrificial layers using the difference in the rate of hygroscopic swelling between two printing polymer materials. The hygroscopic behavior on the interfaced structure was modeled with COMSOL Multiphysics. The surface and electrical properties of the fabricated three-dimensional patterns were analyzed and characterized.
Keywords
Swollen-off; 3D printing; Hygroscopic swelling; Selective metallization;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. Bikas, P. Stavropoulos, G. Chryssolouris, Additive manufacturing methods and modelling approaches: a critical review, Int. J. Adv. Manuf. Technol. 83 (2015) 389-405.
2 X. Wang, Q. Guo, X. Cai, S. Zhou, B. Kobe, J. Yang, Initiator-integrated 3D printing enables the formation of complex metallic architectures, ACS Appl. Mater. Interfaces 6 (2013) 2583-2587.
3 N.L. Jeon, P.G. Clem, D.A. Payne, R.G. Nuzzo, A monolayer-based lift-off process for patterning chemical vapor deposition copper thin films, Langmuir 12 (1996) 5350-5355.   DOI
4 I. Gibson, D.W. Rosen, B. Stucker, Additive Manufacturing Technologies, Springer, 2010.
5 I. Gibson, D. Rosen, B. Stucker, Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing, Springer, 2014.
6 S. Kumar, B.L. Wardle, M.F. Arif, Strength and performance enhancement of bonded joints by spatial tailoring of adhesive compliance via 3D printing, ACS Appl. Mater. Interfaces 9 (2017) 884-891.   DOI
7 J.H. Perez, F. Tanaka, T. Uchino, Comparative 3D simulation on water absorption and hygroscopic swelling in japonica rice grains under various isothermal soaking conditions, Food Res. Int. 44 (2011) 2615-2623.   DOI
8 D. Espalin, D.W. Muse, E. MacDonald, R.B. Wicker, 3D Printing multifunctionality: structures with electronics, Int. J. Adv. Manuf. Technol. 72 (2014) 963-978.   DOI
9 K.V. Wong, A. Hernandez, A review of additive manufacturing, ISRN Mech. Eng. 2012 (2012).
10 I. Gibson, D. Rosen, B. Stucker, Development of additive manufacturing technology, Additive Manufacturing Technologies, Springer, 2015, pp. 19-42.
11 E. Macdonald, R. Salas, D. Espalin, M. Perez, E. Aguilera, D. Muse, R.B. Wicker, 3D printing for the rapid prototyping of structural electronics, IEEE Access, 2 2014, pp. 234-242.   DOI
12 J. Buckley, B. O'Flynn, J. Barton, S.C. O'Mathuna, A highly miniaturized wireless inertial sensor using a novel 3D flexible circuit, Microelectron. Int. 26 (2009) 9-21.   DOI
13 E. De Jong, L. Ferreira, P. Bauer, 3D integration with PCB technology, Applied Power electronics Conference and Exposition, 2006. APEC'06. Twenty-first Annual IEEE, IEEE, 2006, p. 7.
14 D. Geiger, D. Shangguan, S. Tam, D. Rooney, Package stacking in SMT for 3D PCB assembly, Electronics Manufacturing Technology Symposium, 2003. IEMT 2003. IEEE/CPMT/SEMI 28th International, IEEE, 2003, pp. 261-264.
15 E. De Jong, J. Ferreira, P. Bauer, Integrated flex winding realisation for 3D PCB converters, Proc. IEEE Power Electron. Spec. Conf, 2006, pp. 2878-2884.
16 J. Stampfl, M. Hatzenbichler, Additive manufacturing technologies, CIRP Encyclopedia of Production Engineering, Springer, 2014, pp. 20-27.
17 R. Berenyi, Prototyping of a reliable 3D flexible IC cube package by laser micromachining, Microelectron. Reliab. 49 (2009) 800-805.   DOI
18 M. Liang, H. Xin, Three-dimensionally printed/additive manufactured antennas, Handbook of Antenna Technologies, Springer, 2015, pp. 1-30.
19 C.J. Kief, J. Aarestad, E. MacDonald, C. Shemelya, D. Roberson, R. Wicker, A.M. Kwas, M. Zemba, K. Avery, R. Netzer, Printing multi-functionality: additive manufacturing for CubeSats, Proceedings of the AIAA Space 2014 Conference and Exposition, 2014.
20 P. Nayeri, M. Liang, R.A. Sabory-Garci, M. Tuo, F. Yang, M. Gehm, H. Xin, A.Z. Elsherbeni, 3D printed dielectric reflectarrays: low-cost high-gain antennas at sub-millimeter waves, IEEE Trans. Antenn. Propag. 62 (2014) 2000-2008.   DOI
21 M. Cosker, F. Ferrero, L. Lizzi, R. Staraj, J.-M. Ribero, 3D flexible antenna realization process using liquid metal and additive technology, Antennas and Propagation (APSURSI), 2016 IEEE International Symposium on, IEEE, 2016, pp. 809-810.
22 M.S. Mannoor, Z. Jiang, T. James, Y.L. Kong, K.A. Malatesta, W.O. Soboyejo, N. Verma, D.H. Gracias, M.C. McAlpine, 3D printed bionic ears, Nano Lett. 13 (2013) 2634-2639.   DOI
23 E. MacDonald, R. Wicker, Multiprocess 3D printing for increasing component functionality, Science 353 (2016).
24 J.A. Paulsen, M. Renn, K. Christenson, R. Plourde, Printing conformal electronics on 3D structures with Aerosol Jet technology, Future of Instrumentation International Workshop (FIIW), 2012, IEEE, 2012, pp. 1-4.
25 A. Ambrosi, M. Pumera, 3D-printing technologies for electrochemical applications, Chem. Soc. Rev. 45 (2016) 2740-2755.   DOI
26 G.L. Goh, S. Agarwala, G.D. Goh, H.K.J. Tan, L. Zhao, T.K. Chuah, W.Y. Yeong, Additively manufactured multi-material free-form structure with printed electronics, Int. J. Adv. Manuf. Technol. 94 (2018) 1309-1316.   DOI
27 S.J. Leigh, R.J. Bradley, C.P. Purssell, D.R. Billson, D.A. Hutchins, A simple, lowcost conductive composite material for 3D printing of electronic sensors, PLoS One 7 (2012) e49365.   DOI
28 N. Saengchairat, T. Tran, C.-K. Chua, A review: additive manufacturing for active electronic components, Virtual Phys. Prototyp. 12 (2017) 31-46.   DOI
29 Y. Zheng, Z. He, Y. Gao, J. Liu, Direct desktop printed-circuits-on-paper flexible electronics, Sci. Rep. 3 (2013) 1786.   DOI
30 M.-S. Kim, W.-S. Chu, Y.-M. Kim, A.P.G. Avila, S.-H. Ahn, Direct metal printing of 3D electrical circuit using rapid prototyping, Int. J. Precis. Eng. Manuf. 10 (2009) 147-150.
31 J. Mei, M.R. Lovell, M.H. Mickle, Formulation and processing of novel conductive solution inks in continuous inkjet printing of 3-D electric circuits, IEEE Trans. Electron. Packag. Manuf. 28 (2005) 265-273.   DOI
32 D. Zhang, B. Chi, B. Li, Z. Gao, Y. Du, J. Guo, J. Wei, Fabrication of highly conductive graphene flexible circuits by 3D printing, Synth. Met. 217 (2016) 79-86.   DOI
33 K.K. Christenson, J.A. Paulsen, M.J. Renn, K. McDonald, J. Bourassa, Direct printing of circuit boards using Aerosol $Jet^{(R)}$, NIP & Digital Fabrication Conference, Society for Imaging Science and Technology, 2011, pp. 433-436.
34 B. King, M. Renn, Aerosol Jet direct write printing for mil-aero electronic applications, Palo Alto Colloquia, Lockheed Martin, 2009.
35 J. Vaillancourt, H. Zhang, P. Vasinajindakaw, H. Xia, X. Lu, X. Han, D.C. Janzen, W.-S. Shih, C.S. Jones, M. Stroder, All ink-jet-printed carbon nanotube thin-film transistor on a polyimide substrate with an ultrahigh operating frequency of over 5 GHz, Appl. Phys. Lett. 93 (2008) 444.
36 Y. Tsukada, S. Tsuchida, Y. Mashimoto, Surface laminar circuit packaging, Electronic Components and Technology Conference, 1992. Proceedings., 42nd, IEEE, 1992, pp. 22-27.
37 H.-H. Lee, K.-S. Chou, K.-C. Huang, Inkjet printing of nanosized silver colloids, Nanotechnology 16 (2005) 2436.   DOI
38 S. Bidoki, D. Lewis, M. Clark, A. Vakorov, P. Millner, D. McGorman, Ink-jet fabrication of electronic components, J. Micromech. Microeng. 17 (2007) 967.   DOI
39 G.O. Mallory, J.B. Hajdu, Electroless Plating: Fundamentals and Applications, William Andrew, 1990.
40 K. Cheng, M.H. Yang, W.W. Chiu, C.Y. Huang, J. Chang, T.F. Ying, Y. Yang, Ink-Jet printing, self-assembled polyelectrolytes, and electroless plating: low cost fabrication of circuits on a flexible substrate at room temperature, Macromol. Rapid Commun. 26 (2005) 247-264.   DOI
41 A. Sridhar, J. Reiding, H. Adelaar, F. Achterhoek, D. Van Dijk, R. Akkerman, Inkjetprinting- and electroless-plating-based fabrication of RF circuit structures on highfrequency substrates, J. Micromech. Microeng. 19 (2009) 085020.   DOI
42 U. Zschieschang, H. Klauk, M. Halik, G. Schmid, C. Dehm, Flexible organic circuits with printed gate electrodes, Adv. Mater. 15 (2003) 1147-1151.   DOI
43 D.I. Petukhov, M.N. Kirikova, A.A. Bessonov, M.J. Bailey, Nickel and copper conductive patterns fabricated by reactive inkjet printing combined with electroless plating, Mater. Lett. 132 (2014) 302-306.   DOI
44 C.-C. Tseng, Y.-H. Chou, T.-W. Hsieh, M.-W. Wang, Y.-Y. Shu, M.-D. Ger, Interdigitated electrode fabricated by integration of ink-jet printing with electroless plating and its application in gas sensor, Colloid. Surface. A Physicochem. Eng. Aspect. 402 (2012) 45-52.   DOI