DOI QR코드

DOI QR Code

Fabrication of three-dimensional electrical patterns by swollen-off process: An evolution of the lift-off process

  • Mansouri, Mariam S. (Department of Mechanical and Materials Engineering, Khalifa University of Science and Technology) ;
  • An, Boo Hyun (Department of Mechanical and Materials Engineering, Khalifa University of Science and Technology) ;
  • Shibli, Hamda Al (Department of Mechanical and Materials Engineering, Khalifa University of Science and Technology) ;
  • Yassi, Hamad Al (Department of Mechanical and Materials Engineering, Khalifa University of Science and Technology) ;
  • Alkindi, Tawaddod Saif (Department of Mechanical and Materials Engineering, Khalifa University of Science and Technology) ;
  • Lee, Ji Sung (Department of Mechanical and Materials Engineering, Khalifa University of Science and Technology) ;
  • Kim, Young Keun (Department of Materials Science and Engineering, Korea University) ;
  • Ryu, Jong Eun (Department of Mechanical and Aerospace Engineering, North Carolina State University) ;
  • Choi, Daniel S. (Department of Mechanical and Materials Engineering, Khalifa University of Science and Technology)
  • Received : 2018.03.14
  • Accepted : 2018.06.01
  • Published : 2018.11.30

Abstract

We present a novel process to fabricate three-dimensional (3D) metallic patterns from 3D printed polymeric structures utilizing different hygroscopic swelling behavior of two different polymeric materials. 3D patterns are printed with two different polymers as cube shape. The surface of the 3D printed polymeric structures is plated with nickel by an electroless plating method. The nickel patterns on the surface of the 3D printed cube shape structure are formed by removing sacrificial layers using the difference in the rate of hygroscopic swelling between two printing polymer materials. The hygroscopic behavior on the interfaced structure was modeled with COMSOL Multiphysics. The surface and electrical properties of the fabricated three-dimensional patterns were analyzed and characterized.

Keywords

Acknowledgement

Supported by : Samsung Electronics

References

  1. H. Bikas, P. Stavropoulos, G. Chryssolouris, Additive manufacturing methods and modelling approaches: a critical review, Int. J. Adv. Manuf. Technol. 83 (2015) 389-405.
  2. J. Stampfl, M. Hatzenbichler, Additive manufacturing technologies, CIRP Encyclopedia of Production Engineering, Springer, 2014, pp. 20-27.
  3. K.V. Wong, A. Hernandez, A review of additive manufacturing, ISRN Mech. Eng. 2012 (2012).
  4. I. Gibson, D. Rosen, B. Stucker, Development of additive manufacturing technology, Additive Manufacturing Technologies, Springer, 2015, pp. 19-42.
  5. D. Espalin, D.W. Muse, E. MacDonald, R.B. Wicker, 3D Printing multifunctionality: structures with electronics, Int. J. Adv. Manuf. Technol. 72 (2014) 963-978. https://doi.org/10.1007/s00170-014-5717-7
  6. E. Macdonald, R. Salas, D. Espalin, M. Perez, E. Aguilera, D. Muse, R.B. Wicker, 3D printing for the rapid prototyping of structural electronics, IEEE Access, 2 2014, pp. 234-242. https://doi.org/10.1109/ACCESS.2014.2311810
  7. E. De Jong, L. Ferreira, P. Bauer, 3D integration with PCB technology, Applied Power electronics Conference and Exposition, 2006. APEC'06. Twenty-first Annual IEEE, IEEE, 2006, p. 7.
  8. D. Geiger, D. Shangguan, S. Tam, D. Rooney, Package stacking in SMT for 3D PCB assembly, Electronics Manufacturing Technology Symposium, 2003. IEMT 2003. IEEE/CPMT/SEMI 28th International, IEEE, 2003, pp. 261-264.
  9. E. De Jong, J. Ferreira, P. Bauer, Integrated flex winding realisation for 3D PCB converters, Proc. IEEE Power Electron. Spec. Conf, 2006, pp. 2878-2884.
  10. J. Buckley, B. O'Flynn, J. Barton, S.C. O'Mathuna, A highly miniaturized wireless inertial sensor using a novel 3D flexible circuit, Microelectron. Int. 26 (2009) 9-21. https://doi.org/10.1108/13565360910981517
  11. R. Berenyi, Prototyping of a reliable 3D flexible IC cube package by laser micromachining, Microelectron. Reliab. 49 (2009) 800-805. https://doi.org/10.1016/j.microrel.2009.03.015
  12. C.J. Kief, J. Aarestad, E. MacDonald, C. Shemelya, D. Roberson, R. Wicker, A.M. Kwas, M. Zemba, K. Avery, R. Netzer, Printing multi-functionality: additive manufacturing for CubeSats, Proceedings of the AIAA Space 2014 Conference and Exposition, 2014.
  13. P. Nayeri, M. Liang, R.A. Sabory-Garci, M. Tuo, F. Yang, M. Gehm, H. Xin, A.Z. Elsherbeni, 3D printed dielectric reflectarrays: low-cost high-gain antennas at sub-millimeter waves, IEEE Trans. Antenn. Propag. 62 (2014) 2000-2008. https://doi.org/10.1109/TAP.2014.2303195
  14. M. Liang, H. Xin, Three-dimensionally printed/additive manufactured antennas, Handbook of Antenna Technologies, Springer, 2015, pp. 1-30.
  15. M. Cosker, F. Ferrero, L. Lizzi, R. Staraj, J.-M. Ribero, 3D flexible antenna realization process using liquid metal and additive technology, Antennas and Propagation (APSURSI), 2016 IEEE International Symposium on, IEEE, 2016, pp. 809-810.
  16. M.S. Mannoor, Z. Jiang, T. James, Y.L. Kong, K.A. Malatesta, W.O. Soboyejo, N. Verma, D.H. Gracias, M.C. McAlpine, 3D printed bionic ears, Nano Lett. 13 (2013) 2634-2639. https://doi.org/10.1021/nl4007744
  17. J.A. Paulsen, M. Renn, K. Christenson, R. Plourde, Printing conformal electronics on 3D structures with Aerosol Jet technology, Future of Instrumentation International Workshop (FIIW), 2012, IEEE, 2012, pp. 1-4.
  18. A. Ambrosi, M. Pumera, 3D-printing technologies for electrochemical applications, Chem. Soc. Rev. 45 (2016) 2740-2755. https://doi.org/10.1039/C5CS00714C
  19. G.L. Goh, S. Agarwala, G.D. Goh, H.K.J. Tan, L. Zhao, T.K. Chuah, W.Y. Yeong, Additively manufactured multi-material free-form structure with printed electronics, Int. J. Adv. Manuf. Technol. 94 (2018) 1309-1316. https://doi.org/10.1007/s00170-017-0972-z
  20. E. MacDonald, R. Wicker, Multiprocess 3D printing for increasing component functionality, Science 353 (2016).
  21. N. Saengchairat, T. Tran, C.-K. Chua, A review: additive manufacturing for active electronic components, Virtual Phys. Prototyp. 12 (2017) 31-46. https://doi.org/10.1080/17452759.2016.1253181
  22. Y. Zheng, Z. He, Y. Gao, J. Liu, Direct desktop printed-circuits-on-paper flexible electronics, Sci. Rep. 3 (2013) 1786. https://doi.org/10.1038/srep01786
  23. M.-S. Kim, W.-S. Chu, Y.-M. Kim, A.P.G. Avila, S.-H. Ahn, Direct metal printing of 3D electrical circuit using rapid prototyping, Int. J. Precis. Eng. Manuf. 10 (2009) 147-150.
  24. S.J. Leigh, R.J. Bradley, C.P. Purssell, D.R. Billson, D.A. Hutchins, A simple, lowcost conductive composite material for 3D printing of electronic sensors, PLoS One 7 (2012) e49365. https://doi.org/10.1371/journal.pone.0049365
  25. D. Zhang, B. Chi, B. Li, Z. Gao, Y. Du, J. Guo, J. Wei, Fabrication of highly conductive graphene flexible circuits by 3D printing, Synth. Met. 217 (2016) 79-86. https://doi.org/10.1016/j.synthmet.2016.03.014
  26. K.K. Christenson, J.A. Paulsen, M.J. Renn, K. McDonald, J. Bourassa, Direct printing of circuit boards using Aerosol $Jet^{(R)}$, NIP & Digital Fabrication Conference, Society for Imaging Science and Technology, 2011, pp. 433-436.
  27. B. King, M. Renn, Aerosol Jet direct write printing for mil-aero electronic applications, Palo Alto Colloquia, Lockheed Martin, 2009.
  28. J. Mei, M.R. Lovell, M.H. Mickle, Formulation and processing of novel conductive solution inks in continuous inkjet printing of 3-D electric circuits, IEEE Trans. Electron. Packag. Manuf. 28 (2005) 265-273. https://doi.org/10.1109/TEPM.2005.852542
  29. J. Vaillancourt, H. Zhang, P. Vasinajindakaw, H. Xia, X. Lu, X. Han, D.C. Janzen, W.-S. Shih, C.S. Jones, M. Stroder, All ink-jet-printed carbon nanotube thin-film transistor on a polyimide substrate with an ultrahigh operating frequency of over 5 GHz, Appl. Phys. Lett. 93 (2008) 444.
  30. H.-H. Lee, K.-S. Chou, K.-C. Huang, Inkjet printing of nanosized silver colloids, Nanotechnology 16 (2005) 2436. https://doi.org/10.1088/0957-4484/16/10/074
  31. S. Bidoki, D. Lewis, M. Clark, A. Vakorov, P. Millner, D. McGorman, Ink-jet fabrication of electronic components, J. Micromech. Microeng. 17 (2007) 967. https://doi.org/10.1088/0960-1317/17/5/017
  32. G.O. Mallory, J.B. Hajdu, Electroless Plating: Fundamentals and Applications, William Andrew, 1990.
  33. K. Cheng, M.H. Yang, W.W. Chiu, C.Y. Huang, J. Chang, T.F. Ying, Y. Yang, Ink-Jet printing, self-assembled polyelectrolytes, and electroless plating: low cost fabrication of circuits on a flexible substrate at room temperature, Macromol. Rapid Commun. 26 (2005) 247-264. https://doi.org/10.1002/marc.200400462
  34. Y. Tsukada, S. Tsuchida, Y. Mashimoto, Surface laminar circuit packaging, Electronic Components and Technology Conference, 1992. Proceedings., 42nd, IEEE, 1992, pp. 22-27.
  35. A. Sridhar, J. Reiding, H. Adelaar, F. Achterhoek, D. Van Dijk, R. Akkerman, Inkjetprinting- and electroless-plating-based fabrication of RF circuit structures on highfrequency substrates, J. Micromech. Microeng. 19 (2009) 085020. https://doi.org/10.1088/0960-1317/19/8/085020
  36. U. Zschieschang, H. Klauk, M. Halik, G. Schmid, C. Dehm, Flexible organic circuits with printed gate electrodes, Adv. Mater. 15 (2003) 1147-1151. https://doi.org/10.1002/adma.200305012
  37. D.I. Petukhov, M.N. Kirikova, A.A. Bessonov, M.J. Bailey, Nickel and copper conductive patterns fabricated by reactive inkjet printing combined with electroless plating, Mater. Lett. 132 (2014) 302-306. https://doi.org/10.1016/j.matlet.2014.06.109
  38. C.-C. Tseng, Y.-H. Chou, T.-W. Hsieh, M.-W. Wang, Y.-Y. Shu, M.-D. Ger, Interdigitated electrode fabricated by integration of ink-jet printing with electroless plating and its application in gas sensor, Colloid. Surface. A Physicochem. Eng. Aspect. 402 (2012) 45-52. https://doi.org/10.1016/j.colsurfa.2012.03.016
  39. X. Wang, Q. Guo, X. Cai, S. Zhou, B. Kobe, J. Yang, Initiator-integrated 3D printing enables the formation of complex metallic architectures, ACS Appl. Mater. Interfaces 6 (2013) 2583-2587.
  40. N.L. Jeon, P.G. Clem, D.A. Payne, R.G. Nuzzo, A monolayer-based lift-off process for patterning chemical vapor deposition copper thin films, Langmuir 12 (1996) 5350-5355. https://doi.org/10.1021/la960377b
  41. I. Gibson, D.W. Rosen, B. Stucker, Additive Manufacturing Technologies, Springer, 2010.
  42. I. Gibson, D. Rosen, B. Stucker, Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing, Springer, 2014.
  43. S. Kumar, B.L. Wardle, M.F. Arif, Strength and performance enhancement of bonded joints by spatial tailoring of adhesive compliance via 3D printing, ACS Appl. Mater. Interfaces 9 (2017) 884-891. https://doi.org/10.1021/acsami.6b13038
  44. J.H. Perez, F. Tanaka, T. Uchino, Comparative 3D simulation on water absorption and hygroscopic swelling in japonica rice grains under various isothermal soaking conditions, Food Res. Int. 44 (2011) 2615-2623. https://doi.org/10.1016/j.foodres.2011.05.003

Cited by

  1. Selective Electroplating for 3D‐Printed Electronics vol.4, pp.8, 2019, https://doi.org/10.1002/admt.201900126