• Title/Summary/Keyword: Electroless Ni-P plating

Search Result 112, Processing Time 0.03 seconds

ENIG 표면처리 공정 및 특성에 관한 연구 (A Study on the ENIG Surface Finish Process and Its Properties)

  • 이홍기;손성호;이호영;전준미
    • 한국표면공학회지
    • /
    • 제40권1호
    • /
    • pp.32-38
    • /
    • 2007
  • Ni coating layers were formed using a newly developed electroless Ni plating solution. The properties of Ni coating layer such as internal stress, hardness, surface roughness, crystallinity, solderability and surface morphology were investigated using various tools. Results revealed that internal stress decreased with plating time and reached $40N/mm^2$ at 20 minutes of the plating time. Hardness increased with increasing P content and thickness. Surface roughness of the pad decreased with Ni and Ni/Au plating. Crystallinity decreased with increasing P content. Solderability based on wettability decreased with Ni and Ni/Au plating. Based on surface morphology, it is expected that Ni coating layer formed using a newly developed electroless Ni plating solution is lower than that formed using a commercial electroless Ni plating solution in possibility of black pad occurrence.

무전해 니켈 도금액 pH 변화에 따른 ENIG/Sn-Ag-Cu솔더 접합부의 취성파괴 특성 (Brittle Fracture Behavior of ENIG/Sn-Ag-Cu Solder Joint with pH of Ni-P Electroless Plating Solution)

  • 서원일;이태익;김영호;유세훈
    • 마이크로전자및패키징학회지
    • /
    • 제27권3호
    • /
    • pp.29-34
    • /
    • 2020
  • 본 연구에서는 무전해 니켈 도금액 pH 변화에 따른 electroless nickel immersion gold (ENIG)/Sn-3.0wt.%Ag-0.5wt.%Cu(SAC305) 솔더 접합부 취성 파괴 거동에 대하여 평가하였다. ENIG 표면처리를 위한 무전해 니켈 도금액의 pH는 4.0에서 5.5로 변화 시켰다. 무전해 니켈 도금 후 Ni-P 표면 관찰 결과, 도금액의 pH가 낮아질수록 Ni-P 층 nodule 표면에 핀홀이 증가하였다. 솔더링 후 접합부 계면에서는 (Cu,Ni)6Sn5 금속간화합물이 형성되었으며, 무전해 니켈 도금액의 pH가 증가할수록 솔더접합부의 계면 금속간화합물의 두께는 증가하였다. 고속전단 시험을 통하여 ENIG/SAC305 솔더 접합부의 취성파괴 거동을 확인하였으며, 무전해 니켈 도금액의 pH가 증가할수록 솔더접합부의 전단강도는 감소하는 경향을 보였다. 또한, 솔더 접합부의 취성 파괴율은 pH가 5일 때 가장 높은 값을 보였다.

무전해 Ni-Cu-P 도금층의 자성에 미치는 도금조건과 도금속도의 영향 (Effect of Plating Condition and Plating Rate on the Magnetic Properties of Electroless Ni-Cu-P Deposits)

  • 오이식;이태희
    • 동력기계공학회지
    • /
    • 제10권3호
    • /
    • pp.58-66
    • /
    • 2006
  • The effect of bath composition, plating condition and plating rate on the magnetic properties of electroless Ni-Cu-P deposits were investigated. With increasing $CuSO_4$ concentration in the bath, plating rate increased, while the Br value of deposits decreased Sharply. Plating rate increased up to 34% with the addition of 200ppm of NaF and 0.8ppm of Thiourea to the bath. Plating reaction had been ceased by the increase of pH above 11.3, bath temperature higher than $90^{\circ}C$ and under $70^{\circ}C$. The Br value of deposit was uniform with various concentration of complexing agent (Sodium citrate, Ethylenediamine) in the bath. The Br value of deposit was almost equal to that found by the addition of stabilizer(Thiourea) and accelerator(NaF). The Br value of deposit was uniform in plating time(120 min) and heat treatment temperature(below $200^{\circ}C$), and were confirmed to have adequate bath stability for practical use.

  • PDF

무전해 Ni-P 도금의 공정조건에 따른 도금피막 특성변화 (Electroless Ni-P layer Characteristics in accordance with the plating process conditions)

  • 이홍기;전준미;박해덕
    • 한국표면공학회지
    • /
    • 제36권3호
    • /
    • pp.263-271
    • /
    • 2003
  • Optimal conditions of electroless nickel plating in acid baths has been studied for industrial applications of a developed EN solution. The phosphorus content in the deposition ranges from 8 to $12\;wt.\%$. The investigated EN plating parameters are ion concentrations of nickel and hypophosphite, concentration of reducing and complexing agent, temperature, and pH. The average plating rate of Ni-P deposition was ca. $14{\mu}m/h$. The EN solution used shows a deposition rate of $10{\mu}m/h$ up to seven metal turnovers.

무전해 니켈도금에 대하여(II) (Electroless Nickel Plating)

  • 지태촌;여운관
    • 한국표면공학회지
    • /
    • 제15권2호
    • /
    • pp.57-67
    • /
    • 1982
  • Electroless Ni-plating is often utilized in industries due to its physical and mechanical characteristics in contrast to conventional electroplatings. Thus, electroless Ni-plating will be broadly applicated in many fields. However, The physial and mechanical properties of this depositss depend largely on the structure and P content of film and heat treatment. And here discused about the important results of those past research.

  • PDF

복합 착화제 첨가가 무전해 Ni-P 도금액의 특성에 미치는 영향 (Effects of Multi-Complex Agent Addition on Characteristics of Electroless Ni-P Solution)

  • 이홍기;이호년;전준미;허진영
    • 한국표면공학회지
    • /
    • 제43권2호
    • /
    • pp.111-120
    • /
    • 2010
  • In this study, the effects of multi-complex agents addition on characteristics of electroless Ni plating solution are investigated. The species and the concentration of complexing agents are major factors to control the deposition rate, P concentration, and surface morphology of plating films. Adipic acid increases the deposition rate in regardless of single- or mutli-complex agent addition. However, lactic acid effectively increases the deposition rate in case of multi-addition as the complex agents with adipic or sodium succinate acid. In addition, sodium citric acid and malic acid show good stabilizing effects of plating solution and lowering the deposition rate, because they have high complexibility. Therefore, it is suggested that the development of Ni-P plating solution suitable for diverse usages can be carried out systematically using the database from this study.

무전해 Ni 도금에 의한 선택적 CONTACT HOLE 충전 (Selective Contact Hole Filling by electroless Ni Plating)

  • 우찬희;권용환;김영기;박종완;이원해
    • 한국표면공학회지
    • /
    • 제25권4호
    • /
    • pp.189-206
    • /
    • 1992
  • The effect of activation and electroless nickel plating conditions on contact properties was investi-gated for selective electroless nickel plating of Si wafers in order to obtain an optimum condition of con-tact hole filling. According to RCA prosess, p-type silicon (100) surface was cleaned out and activated. The effects of temperature, DMAB concentration, time, and strirring were investigated for activation of p-type Si(100) surface. The optimal activation condition was 0.2M HF, 1mM PdCl2, 2mM EDTA,$ 70^{\circ}C$, and 90sec under ultrasonic vibration. In electroless nickel plating, the effect of temperature, DMAB concentra-tion, pH, and plating time were studied. The optimal plating condition found was 0.10M NiSO4.H2O, 0.11M Citrate, pH 6.8, $60^{\circ}C$, 30minutes. The contact resistance of films was comparatively low. It took 30minutes to obtain 1$\mu\textrm{m}$ thick film with 8mM DMAB concentration. The film surface roughness was improved with decreasing temperature and decreasing pH of the plating solution. The best quality of the film was obtained at the condition of temperature $60^{\circ}C$ and pH 6.0. The micro-vickers hardness of film was about 800Hv. Plating rate of nickel on the hole pattern was slower than that of nickel on the line pattern.

  • PDF

CBN분말상에 석출형상 제어를 위한 무전해 기능성 니켈합금도금에 관한 연구 (A Study on the Functional Electroless Ni Plating for Controled Morphology on the CBN Powder)

  • 추현식;김동규
    • 한국표면공학회지
    • /
    • 제41권6호
    • /
    • pp.312-324
    • /
    • 2008
  • In this study, the functional property as a super abrasive material was secured for CBN powder by the electroless Ni-P plating on the surface of the particle. The plating solution has been prepared to control the surface morphology by regulating surfactants and process conditions. The effects of processing parameters on the surface morphology of CBN powder was discussed. The results are summarized as follows; A stable plating tendency was achieved from 1 hour after quantitatively dropping reducing agent. It was observed that more than 50% of the weight gain was obtained by Ni-P coating on the surface of CBN super abrasive powder. The morphology of the Ni-P coating layer is consisted of botryoidal and spiky type and it could be controlled by regulating processing parameters. Superior characteristic in terms of surface morphology was found in the nonionic surfactant XL-80N. It was found that XL-80N considerably decreased surface tension of CBN powder and Ni-P alloy surface then enhance wettability as well as plating rate. Metal coated CBN powder as a raw material of resin bond wheel has been developed through this investigation.

MCFC anode 대체 전극 개발을 위한 분말 알루미나 상의 무전해 Ni 도금 연구 (Electoless Ni Plating on Alumina Powder to Application of MCFC Anode Material)

  • 김기현;조계현
    • 한국표면공학회지
    • /
    • 제40권3호
    • /
    • pp.131-137
    • /
    • 2007
  • The typical MCFC (molten carbonate fuel cell) anode is made of Ni-10%Cr alloy. The work of this paper is focused concerning long life of anode because Ni-10% Cr anode is suffering from sintering and creep behavior during cell operation. Therefore, Ni-coated Alumina powder($20{\mu}m$) was developed by electroless nickel plating. Optimum condition of electroless nickel coation on $20{\mu}m$ alumina is as follows: pH 11.7, temperature $65{\sim}80^{\circ}C$, powder amount $100cm^2/l$. The deposition rate for Ni-electroless plating was as a function of temperature and activation energy was evaluated by Arrhenius Equation thereby activation energy calculated slope of experimental data as 117.6 kJ/mol, frequency factor(A) was $6.28{\times}10^{18}hr^{-1}$, respectively.

열처리에 따른 무전해 니켈 도금 층의 상변태 거동이 부식과 캐비테이션 침식에 미치는 영향 (Effect of Phase Transformation Behavior of Electroless Nickel Plating Layer on Corrosion and Cavitation-Erosion with Heat Treatment)

  • 박일초;김성종
    • Corrosion Science and Technology
    • /
    • 제23권1호
    • /
    • pp.64-71
    • /
    • 2024
  • The objective of this study was to investigate corrosion and cavitation-erosion characteristics of the electroless nickel plating layer with heat treatment. The crystallization temperature of the electroless nickel plating layer was about 410 ℃. The phase transformation energy was confirmed to be 12.66 J/g. With increasing heat treatment temperature, the amorphous electroless nickel plating layer gradually changed to crystalline Ni and Ni3P. At the same time, the crystal grain size was also increased. Additionally, when heat treatment was performed at a temperature above 400 ℃, NiO phase was observed due to oxidation phenomenon. As a result of the electrochemical polarization experiment, the corrosion resistance of the heat-treated electroless nickel plating layers was superior to that of the as-deposited plating layer. This was because crystal grains became larger and grain boundaries decreased during heat treatment. The cavitation-erosion resistance of heat-treated plating layers tended to be superior to that of as-deposited plating layers due to increased microhardness.