• Title/Summary/Keyword: Electrode System

Search Result 1,763, Processing Time 0.034 seconds

Optimization of Capacitance Balance for a Hybrid Supercapacitor Consisted of LiMn2O4/AC as a Positive and AC Negative Electrode

  • Cho, Min-Young;Park, Sun-Min;Lee, Jae-Won;Roh, Kwang-Chul
    • Journal of Electrochemical Science and Technology
    • /
    • v.2 no.3
    • /
    • pp.152-156
    • /
    • 2011
  • A hybrid supercapacitor is fabricated using a composite material from $LiMn_2O_4$ (LMO) and activated carbon (AC) as the positive electrode and AC as the negative electrode to form the (LMO + AC)/AC system. Volume ratio (positive : negative) of electrodes is controlled to investigate of the power and energy balance. The (LMO + AC)/AC system shows better performances than the LMO/AC system. Especially, electrochemical impedance spectra, rate charge.discharge and cycle performance testing show that the (LMO + AC)/AC system have an outstanding electrochemical performance at volume ratios of (LMO + AC)/AC = 1 : 1.7 and 1 : 2. Electric double layer capacitor (EDLC) capacitance between AC of the positive electrode and AC of the negative electrode improves power density without loss of capacitance. Stable capacitance is achieved by lowering the positive electrode resistance and balancing the energy and power densities between the positive and negative electrodes by the addition of AC to the positive electrode at high current density.

Study of the Wearable Electrocardiogram Measuring System using Capacitive-coupled Electrode (정전 용량성 결합 전극을 이용한 웨어러블 심전도 측정 시스템 설계에 관한 연구)

  • Lee, Jae-Ho;Lee, Young-Jae;Lee, Kang-Hwi;Kang, Seng-Jin;Kim, Kyeung-Nam;Park, Hee-Jung;Lee, Jeong-Whan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.10
    • /
    • pp.1448-1454
    • /
    • 2014
  • In this study, a new type of electrode device is implemented to measure the capacitance energy and interpret it as the ECG (Electrocardiogram) data. The main idea of this new electrode system is to estimate the capacitance on the skin by assembling a capacitive-coupled circuits and translate into the ECG signal. To measure the coupling energy and estimate the aquired data in terms of heart activity, the capacitive-coupled electrode is garmented with fabrics in the form of a chest band or a vest jacket. To compare the ECG data from the capacitive-coupled electrode with the conventional electrode(Ag-AgCl) system, the corelation coefficient between two signals is computed as 0.9517. Thus, we can conclude the fact that capacitive-coupled electrode system can measure a person's heart activity without any contact to his or her skin and can the interpreted as the ECG data.

Experimental study on the surface integrity of electrode for WEDG process (WEDG 전극가공에서의 전극표면형상의 실험적 고찰)

  • 안현민;김영태;박성준;이송규;이상조
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.218-222
    • /
    • 2002
  • Micro-EDM is generally used far machining micro holes, pockets, and 3-D structures. For micro-EDM, first of all, micro-electrode fabrication is needed and WEDC system is proposed for tool electrode fabrication method. When tool electrode is fabricated using WEDG system, its characteristics are under the control of many EDM parameters. Also relations between the parameters affect electrode fabrication. In this study, experiments are carried out to analyze effects of EDM parameters about electrode surface integrity on micro-electrode fabrication. Experimental method and analysis are used to experimental design method. Factors used in experiments are composed of capacitance, resistance, pause time, wire feed rate, spindle rotating speed. As a result of experiments, capacitance and resistance affect electrode surface.

  • PDF

A Study on the Fabrication of Periodic Holes on Metal Electrode for Electrodeionization System Application (전기탈이온시스템 응용을 위한 주기적 홀을 갖는 금속 전극 제작에 관한 연구)

  • Yeo, Jong-Bin;Sun, Sang-Wook;Lee, Hyun-Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.3
    • /
    • pp.227-231
    • /
    • 2013
  • Electrodeionization is a hybrid separation process of electrodialysis and ion exchange to produce high purity water under electric field. This article provides a fabrication result of hole patterned metal electrode for elecrodeionization system. The hole patterns have been fabricated by nanosphere lithography (NSL). The technique utilizes the self-assembled nanospheres as lens-mask patterns and collimated laser beam source. The hole patterns have a periodic array structure. The images of hole pattern on metal electrode prepared were observed by SEM. We believe that the periodic hole patterned metal electrode structure is a useful device applicable for metal mat electrode in electrodeionization system.

An Maximization of Ionic Wind Utilizing a Cylindrical Corona Electrode (관형 코로나 방전전극을 이용한 이온풍속의 최대화)

  • Jung, Jae-Seung;Moon, Jae-Duk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.12
    • /
    • pp.2256-2261
    • /
    • 2010
  • A corona discharge system with needle point or wire type corona electrode has been well used as an ionic wind blower. The corona discharge system with a needle point electrode produces ions at lower applied voltage effectively. However, the corona discharge on the needle point electrode transits to the arc discharge at lower voltage, and it is hard to obtain the elevated electric field in the discharge airgap for enhancing the ion migration velocity due to the weak Coulomb force. A cylindrical corona electrode with sharp round tip is reported as one of effective corona electrode, because of its higher breakdown voltage than that of the needle electrode. A basic study, for the effectiveness of cylindrical electrode shape on the ionic wind generation, has been investigated to obtain an maximum wind velocity, which however is the final goal for the real field application of this kind ionic wind blower. In this paper, a parametric study for maximizing the ionic wind velocity utilizing the cylindrical corona electrode and a maximum ion wind velocity of 4.1 m/s were obtained, which is about 1.8 times higher than that of 2.3m/s obtained with the needle corona electrode from the velocity profile.

The Usability of Zinc Electrode using Wireless Measuring System of Electric Potential (무선전위측정시스템에 사용하는 아연전극 활용성 검토)

  • Lee, Jong-Rark;Leem, Sa-Hawn;Kim, Sang-O
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.177-180
    • /
    • 2006
  • This study is to make a basic study if solid zinc (Zn) can be used for buried reference electrode, so we examined the adequacy of zinc as reference electrode by using zinc which showed regular electrode for buried period. The deference of electric potential if zinc electrode for corrosion factor such as soil resistivity or pH didn't show fixed trend and there was no clear trend on the change of measurement period. From field test, it is known that the natural electric potential difference of CSE electrode and zinc electrode is 1,100mV, but the electric potential of zinc electrode for CSE electrode in the natural soil and copying soil was 1,094~1,158mV. There was no fixed trend on the change of measurement period and electric potential difference of zinc electrode for corrosion factors such as soil resistivity or pH. Consequently, there was 40~60mV of electric potential difference in every copying soil during the experiment measurement.

  • PDF

Effect of Electrochemical Redox Reaction on Biochemical Ammonium Oxidation and Chemical Nitrite Oxidation

  • Jeon, Bo-Young;Seo, Ha-Na;Kang, Seung-Won;Park, Doo-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.3
    • /
    • pp.485-493
    • /
    • 2010
  • A modified graphite felt electrode with neutral red (NR-electrode) was shown to catalyze the chemical oxidation of nitrite to nitrate under aerobic conditions. The electrochemically oxidized NR-electrode (EO-NR-electrode) and reduced NR-electrode (ER-NR-electrode) catalyzed the oxidation of $1,094{\pm}39$ mg/l and $382{\pm}45$ mg/l of nitrite, respectively, for 24 h. The electrically uncharged NR-electrode (EU-NR-electrode) catalyzed the oxidation of $345{\pm}47$ mg/l of nitrite for 24 h. The aerobic bacterial community immobilized in the EO-NR-electrode did not oxidize ammonium to nitrite; however, the aerobic bacterial community immobilized in the ER-NR-electrode bioelectrochemically oxidized $1,412{\pm}39$ mg/l of ammonium for 48 h. Meanwhile, the aerobic bacterial community immobilized on the EU-NR-electrode biochemically oxidized $449{\pm}22$ mg/l of ammonium for 48 h. In the continuous culture system, the aerobic bacterial community immobilized on the ER-NR-electrode bioelectrochemically oxidized a minimal $1,337{\pm}38$ mg/l to a maximal $1,480{\pm}38$ mg/l of ammonium to nitrate, and the community immobilized on the EU-NR-electrode biochemically oxidized a minimal $327{\pm}23$ mg/l to a maximal $412{\pm}26$ mg/l of ammonium to nitrate every two days. The bacterial communities cultivated in the ER-NR-electrode and EU-NR-electrode in the continuous culture system were analyzed by TGGE on the $20^{th}$ and $50^{th}$ days of incubation. Some ammonium-oxidizing bacteria were enriched on the ER-NR-electrode, but not on the EU-NR-electrode.

Eletrochemical Characteristics of Ozone Generator using Boron-doped Diamond Electrode (붕소가 도핑된 다이아몬드전극을 이용한 오존발생기의 전기화학적 특성)

  • Oh, One-Gyun;Kim, Gyu-Sik;Einaga, Yasuaki;Fujishima, Akira;Park, Soo-Gik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.585-588
    • /
    • 2001
  • Thin. Boron-doped conducting diamond films are expected to be excellent electrodes for industrial electrolysis. Boron-doped conducting diamond films were used as anode for generating ozone gas by electrolysis of acidic solution. In this work, we have studied ozone generating system using Boron-doped Diamond electrode. Electrochemical cell and ozone generating system were designed for decreasing the temperature of the system. which was elevated during the reaction. by circulation of electrolyte in the system. In order to determine the ozone generation properties of diamond electrode. experimental conditions, electrolyte concentration, temperature, flow rate and reaction time were varied diversely. As a result, we could confirm that ozone gas was generated successfully and the performance of diamond electrode was stable while $PbO_2$ electrode was disintegrated. Actually we are found that ozone amount increased by lowering the temperature of electrolyte.

  • PDF

Eletrochemical Characteristics of Ozone Generator using Boron-doped Diamond Electrode (붕소가 도핑된 다이아몬드전극을 이용한 오존발생기의 전기화학적 특성)

  • ;;Yasuaki Einaga;Akira Fujishima
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.585-588
    • /
    • 2001
  • Thin, Boron-doped conducting diamond films are expected to be excellent electrodes for industrial electrolysis. Boron-doped conducting diamond films were used as anode for generating ozone gas by electrolysis of acidic solution. In this work, we have studied ozone generating system using Boron-doped Diamond electrode. Electrochemical cell and ozone generating system were designed for decreasing the temperature of the system, which was elevated during the reaction. by circulation of electrolyte in the system. In order to determine the ozone generation properties of diamond electrode, experimental conditions, electrolyte concentration, temperature, flow rate and reaction time were varied diversely. As a result, we could confirm that ozone gas was generated successfully and the performance of diamond electrode was stable while PbO$_2$ electrode was disintegrated. Actually we are found that ozone amount increased by lowering the temperature of electrolyte.

  • PDF

An Estimation of the Efficiency and Satisfaction for EEG Practice Using the Training 10-20 Electrode System: A Questionnaire Survey (연습용 10-20 Electrode System을 이용한 뇌파검사 실습의 효율성과 만족도 평가)

  • Lee, Chang Hee;Kim, Dae Jin;Choi, Jeong Su;Lee, Jong-Woo;Lee, Min Woo;Cho, Jae Wook;Kim, Suhng Wook
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.49 no.3
    • /
    • pp.300-307
    • /
    • 2017
  • Electroencephalography (EEG) is distinct from other medical imaging tests in that it is a functional test that helps to diagnosis disorders related to the brain, such as epilepsy. The most important abilities for a medical technologist when performing an EEG are knowing the exact location of the electrode and recording the EEG wave clearly, except for artifacts. Although theoretical education and practical training are both included in the curriculum for improving these abilities, sufficient practical training has been lacking due to problems like expensive equipment and insufficient practical training time. We try to solve these issues by manufacturing the training 10-20 electrode system and by estimating the efficiency and satisfaction of the training 10-20 electrode system through a questionnaire. The time required for practical training using this system was $43.58{\pm}9.647min$, which proved to be efficient. The satisfaction score of participants who experienced curriculum practical training was improved from $7.21{\pm}2.285$ to $9.46{\pm}1.166$. Based on these findings, it is considered that practical training via the use of the training 10-20 electrode system will solve the problems, such as lack of equipment and insufficient practical training time. Nonetheless, to further improve the training 10-20 electrode system, it must overcome the limitations of developing a device capable of checking the actual brain waves and validating the exact location of electrode attachment.