Browse > Article
http://dx.doi.org/10.4014/jmb.0905.05037

Effect of Electrochemical Redox Reaction on Biochemical Ammonium Oxidation and Chemical Nitrite Oxidation  

Jeon, Bo-Young (Department of Biological Engineering, Seokyeong University)
Seo, Ha-Na (Department of Biological Engineering, Seokyeong University)
Kang, Seung-Won (Department of Biological Engineering, Seokyeong University)
Park, Doo-Hyun (Department of Biological Engineering, Seokyeong University)
Publication Information
Journal of Microbiology and Biotechnology / v.20, no.3, 2010 , pp. 485-493 More about this Journal
Abstract
A modified graphite felt electrode with neutral red (NR-electrode) was shown to catalyze the chemical oxidation of nitrite to nitrate under aerobic conditions. The electrochemically oxidized NR-electrode (EO-NR-electrode) and reduced NR-electrode (ER-NR-electrode) catalyzed the oxidation of $1,094{\pm}39$ mg/l and $382{\pm}45$ mg/l of nitrite, respectively, for 24 h. The electrically uncharged NR-electrode (EU-NR-electrode) catalyzed the oxidation of $345{\pm}47$ mg/l of nitrite for 24 h. The aerobic bacterial community immobilized in the EO-NR-electrode did not oxidize ammonium to nitrite; however, the aerobic bacterial community immobilized in the ER-NR-electrode bioelectrochemically oxidized $1,412{\pm}39$ mg/l of ammonium for 48 h. Meanwhile, the aerobic bacterial community immobilized on the EU-NR-electrode biochemically oxidized $449{\pm}22$ mg/l of ammonium for 48 h. In the continuous culture system, the aerobic bacterial community immobilized on the ER-NR-electrode bioelectrochemically oxidized a minimal $1,337{\pm}38$ mg/l to a maximal $1,480{\pm}38$ mg/l of ammonium to nitrate, and the community immobilized on the EU-NR-electrode biochemically oxidized a minimal $327{\pm}23$ mg/l to a maximal $412{\pm}26$ mg/l of ammonium to nitrate every two days. The bacterial communities cultivated in the ER-NR-electrode and EU-NR-electrode in the continuous culture system were analyzed by TGGE on the $20^{th}$ and $50^{th}$ days of incubation. Some ammonium-oxidizing bacteria were enriched on the ER-NR-electrode, but not on the EU-NR-electrode.
Keywords
Ammonium oxidation; nitrite oxidation; chemolithotroph; electrochemical reduction; neutral red; TGGE;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 2  (Related Records In Web of Science)
연도 인용수 순위
1 Maloney, P. C., E. R. Kashket, and T. H. Wilson. 1974. A proton-motive force drives ATP synthesis in bacteria. Proc. Natl. Acad. Sci. U.S.A. 71: 3896-3900.   DOI   ScienceOn
2 Richardson, D. J., G. F. King, D. J. Kelly, A. G. McEwan, S. J. Ferguson, and J. B. Jackson. 1988. The role of auxiliary oxidants in maintaining the redox balance during phototrophic growth of Rhodobacter capsulatus on propionate of butyrate. Arch. Microbiol. 150: 131-137.   DOI
3 Van Elsas, J. D. and L. S. van Overbeek. 1993. Bacterial responses to soil stimuli, pp. 55-79. In S. Kjelleberg (ed.). Starvation in Bacteria. Plenum Press, New York, NY.
4 Van Keulen, G., L. Dijkhuizen, and W. G. Jeijer. 2000. Effects of the Calvin cycle on nicotinamide adenine dinucleotide concentrations and redox balances of Xanthobacter flavus. J. Bacteriol. 182: 4637-4639.   DOI   ScienceOn
5 Aleem, M. I. H., H. Lees, and D. J. D. Nicholas. 1963. Adenosine-triphosphate-dependent reduction of nicotinamideadenine dinucleotide by ferro-cytochrome c in chemoautotrophic bacteria. Nature (London) 200: 759-761.   DOI
6 Park, D. H. and J. G. Zeikus. 1999. Utilization of electrically reduced neural red by Actinobacillus succinogenes: Physiological function of neutral red in membrane-driven fumarate reduction and energy conservation. J. Bacteriol. 181: 2403-2410.
7 Bollmann, A., M.-J. Bar-Gilissen, and H. J. Laanbroek. 2002. Growth at low ammonium concentrations and starvation response as potential factors involved in niche differentiation among ammonia-oxidizing bacteria. Appl. Environ. Microbiol. 68: 4751-4757.   DOI   ScienceOn
8 Caro, C. A., F. Bedioui, and J. H. Zagal. 2002. Electrocatalytic oxidation of nitrite to nitrate on a vitreous carbon electrode modified with cobalt phthalocyanine. Electrochim. Acta 47: 1489-1494.   DOI   ScienceOn
9 Hollocher, T. C., S. Kumar, and D. J. Nicholas. 1982. Respirationdependent proton translocation in Nitrosomonas europaea and its apparent absence in Nitrobacter agilis during inorganic oxidation. J. Bacteriol. 149: 1013-1020.
10 Suwa, Y., Y, Imamura, T. Suzuki, T. Tashiro, and Y. Urushigawa. 1994. Ammonium-oxidizing bacteria with different sensitivities to $(NH_{4})SO_{4}$ in activated sludge. Water Res. 28: 1523-1532.   DOI   ScienceOn
11 Tsai, Y. L., S. M. Schlasner, and O. Tuovinen. 1986. Inhibitor evaluation with immobilized Nitrobacter agilis. Appl. Environ. Microbiol. 52: 1231-1235.
12 Yamanaka, T., Y. Tanaka, and Y. Fukumori. 1982. Nitrobacter agilis cytochrome c-550: Isolation, physicochemical and enzymatic properties, and primary structure. Plant Cell Physiol. 23: 441-449.
13 Suzuki, I. 1974. Mechanism of inorganic oxidation and energy coupling. Annu. Rev. Microbiol. 28: 85-102.   DOI   ScienceOn
14 Nomoto, T., Y. Fukumori, and T. Yamanaka. 1993. Membranebound cytochrome c is an alternative electron donor for cytochrome $aa_{3}$ in Nitrobacter winogradskyi. J. Bacteriol. 175: 4400-4404.
15 Udert, K. M., T. A. Larson, and W. Gujer. 2005. Chemical nitrite oxidation in acid solution as a consequence of microbial ammonium oxidation. Environ. Sci. Technol. 39: 4066-4075.   DOI   ScienceOn
16 Wang, X., D. L. Falcone, and F. R. Tabita. 1993. Reductive pentose phosphate-independent $CO_{2}$ fixation in Rhodobacter sphaeroides and evidence that ribulose biphosphate carboxylase activity serves to maintain the redox balance of the cell. J. Bacteriol. 175: 3372-3379.
17 Aleem, M. I. H. and D. L. Sewell. 1981. Mechanism of nitrile oxidation and oxidoreductase systems in Nitrobacter agilis. Curr. Microbiol. 5: 267-272.   DOI
18 Kang, H. S., B. K. Na, and D. H. Park. 2007. Oxidation of butane to butanol coupled to electrochemical redox reaction of $NAD^{+}/NADH$. Biotech. Lett. 29: 1277-1280.   DOI   ScienceOn
19 Stead, D. E. 1992. Grouping of plant pathogenic and some other Pseudomonas spp. by using cellular fatty acid profiles. Int. J. Syst. Bacteriol. 42: 281-295.   DOI
20 Egli, K., C. Langer, H. R. Siegrist, A. J. B. Zehnder, M. Wagner, and J. R. van der Meer. 2003. Community analysis of ammonia and nitrite oxidizer during start-up of nitritation reactors. Appl. Environ. Microbiol. 69: 3213-3222.   DOI   ScienceOn
21 Sun, C. C. and T. C. Chou. 1999. Kinetics of anodic oxidation of nitrite ion using in situ electrogenerated HClO in a NaCl aqueous solution. Ind. Eng. Chem. Res. 38: 4545-4551.   DOI   ScienceOn
22 Wilson, D. M., J. F. Alderate, P. C. Maloney, and T. H. Wilson. 1976. Proton-motive force as the source of energy for adenosine 5'-phosphate synthesis in Escherichia coli. J. Bacteriol. 126: 327-337.
23 Kaback, H. R. 1976. Molecular biology and energetics of membrane transport. J. Cell. Physiol. 89: 575-594.   DOI
24 Harold, F. M. 1977. Membrane and energy transduction in bacteria. Curr. Top. Bioenergy 6: 83-149.
25 Aleem, J. I. H. and H. Lee. 1963. Autotrophic enzyme systems. I. Electron transport system concerned with hydroxylamine oxidation in Nitrosomonas. Can J. Biochem. Physiol. 41: 763-774.   DOI
26 Greenber, A. E., L. S. Clessceri, A. D. Eaton, and M. A. H. Franson. 1992. Standard Methods for the Examination of Water and Wastewater, 18th Ed., Section 4-87. American Public Health Association, NW, U.S.A.
27 Wood, P. M. 1986. Nitrification as a bacterial energy source, pp. 39-42. In J. L. Proser (ed.). Nitrification, Vol. 20. IRL Press. Oxford, England.
28 Moriarty, D. J. W. and R. T. Bell. 1993. Bacterial growth and starvation in aquatic environments, pp. 25-53. In S. Kjelleberg (ed.). Starvation in Bacteria. Plenum Press, New York, NY.
29 Shively, J. M., G. van Keulen, and W. G. Meijer. 1998. Something from almost nothing: Carbon dioxide fixation in chemolithotrophs. Annu. Rev. Microbiol. 52: 191-230.   DOI   ScienceOn
30 Droad, J. W. 1976. Energy coupling and respiration in Nitrosomonas europaea. Arch. Microbiol. 110: 257-262.   DOI
31 Van Ginkel, C. G., J. Tramper, K. C. A. M. Luyben, and A. Kalpwijk. 1983. Characterization of Nitrosomonas europaea immobilized in calcium alginate. Enzyme Microb. Technol. 5: 297-303.   DOI   ScienceOn
32 Yamanaka, T., Y. Kamita, and Y. Fukumori. 1981. Molecular and enzymatic properties of 'cytochrome $aa_{3}$'-type terminal oxidase derived from Nitrobacter agilis. J. Biochem. 89: 265-272.
33 Bhandari, B. and D. J. D. Nicholas. 1979. Ammonia, $O_{2}$ uptake and proton extrusion by spheroplasts of Nitrosomonas eutropaea. FEMS Microbiol. Lett. 6: 297-300.   DOI   ScienceOn
34 Some, N., K. Yanagita, Y. Hon-Mami, Y. Fukumori, and T. Yamanaka. 1983. Proton-pump activity of Nitrobacter agilis and Thermus thermophilus cytochrome c oxidases. FEBS Lett. 155: 150-154.   DOI   ScienceOn
35 Princic , A., I. Mahne, F. Megusar, A. Paul, and J. M. Tiedje. 1998. Effects of pH and oxygen and ammonium concentrations on the community structure of nitrifying bacteria from wastewater. Appl. Environ. Microbiol. 64: 3584-3590.
36 Tanaka, Y., Y. Fukumori, and T. Yamanaka. 1983. Purification of cytochrome $a_{1}c_{1}$ from Nitrobacter agilis and characterization of nitrite oxidation system of the bacterium. Arch. Microbiol. 135: 265-271.   DOI
37 Gottschalk, G. 1986. Bacterial Metabolism, 2nd Ed. Springer-Verlag, New York.
38 Park, S. M., H. S. Kang, D. W. Park, and D. H. Park. 2005. Electrochemical control of metabolic flux of Weissella kimchii sk10: Neutral red immobilized in cytoplasmic membrane as electron channel. J. Microbiol. Biotechnol. 15: 80-85.
39 Bhandari, B. and D. J. D. Nicholas. 1979. Ammonia and $O_{2}$ uptake in relation to proton translocation in cells of Nitrosomonas eutropaea. Arch. Microbiol. 122: 249-255.   DOI
40 Prosser, J. I. 1989. Autotrophic nitrification in bacteria. Adv. Microb. Physiol. 30: 125-181.