• Title/Summary/Keyword: Electrode System

Search Result 1,768, Processing Time 0.027 seconds

Investigating the Au-Cu thick layers Electrodeposition Rate with Pulsed Current by Optimization of the Operation Condition

  • Babaei, Hamid;Khosravi, Morteza;Sovizi, Mohamad Reza;Khorramie, Saeid Abedini
    • Journal of Electrochemical Science and Technology
    • /
    • v.11 no.2
    • /
    • pp.172-179
    • /
    • 2020
  • The impact of effective parameters on the electrodeposition rate optimization of Au-Cu alloy at high thicknesses on the silver substrate was investigated in the present study. After ensuring the formation of gold alloy deposits with the desired and standard percentage of gold with the cartage of 18K and other standard karats that should be observed in the manufacturing of the gold and jewelry artifacts, comparing the rate of gold-copper deposition by direct and pulsed current was done. The rate of deposition with pulse current was significantly higher than direct current. In this process, the duty cycle parameter was effectively optimized by the "one factor at a time" method to achieve maximum deposition rate. Particular parameters in this work were direct and pulse current densities, bath temperature, concentration of gold and cyanide ions in electrolyte, pH, agitation and wetting agent additive. Scanning electron microscopy (SEM) and surface chemical analysis system (EDS) were used to study the effect of deposition on the cross-sections of the formed layers. The results revealed that the Au-Cu alloy layer formed with concentrations of 6gr·L-1 Au, 55gr·L-1 Cu, 24 gr·L-1 KCN and 1 ml·L-1 Lauryl dimethyl amine oxide (LDAO) in the 0.6 mA·cm-2 average current density and 30% duty cycle, had 0.841 ㎛·min-1 Which was the highest deposition rate. The use of electrodeposition of pure and alloy gold thick layers as a production method can reduce the use of gold metal in the production of hallow gold artifacts, create sophisticated and unique models, and diversify production by maintaining standard karats, hardness, thickness and mechanical strength. This will not only make the process economical, it will also provide significant added value to the gold artifacts. By pulsating of currents and increasing the duty cycle means reducing the pulse off-time, and if the pulse off-time becomes too short, the electric double layer would not have sufficient growth time, and its thickness decreases. These results show the effect of pulsed current on increasing the electrodeposition rate of Au-Cu alloy confirming the previous studies on the effect of pulsed current on increasing the deposition rate of Au-Cu alloy.

Removal of Nitrate Nitrogen for Batch Reactor by ZVI Bipolar Packed Bed Electrolytic Cell (영가철 충진 회분식 복극전해조에 의한 질산성 질소 제거)

  • Jeong, Joo Young;Park, Jeong Ho;Choi, Won Ho;Park, Joo Yang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.2B
    • /
    • pp.187-192
    • /
    • 2011
  • Nitrate nitrogen is common contaminant in groundwater aquifers, its concentration is regulated many countries below 10 mg/L as N (As per WHO standards) in drinking water. An attempt was made to get optimal results for the treatment of nitrate nitrogen in groundwater by conducting various experiments by changing the experimental conditions for ZVI bipolar packed bed electrolytic cell. From the experimental results it is evident that the nitrate nitrogen removal is more effective when the reactor conditions are maintained in acidic range but when the acidic environment changes to alkaline due to the hydroxide formed during the process of ammonia nitrogen there by increasing the pH reducing the hydrogen ions required for reduction which leads to low effectiveness of the system. In the ZVI bipolar packed bed electrolytic cell, the packing ratio of 0.5~1:1 was found to be most effective for the treatment of nitrate nitrogen because ZVI particles are isolated and individual particle act like small electrode with low packing ratio. It is seen that formation of precipitate and acceleration of clogging incrementally for packing ratio more than 2:1, decreasing the nitrate nitrogen removal rate. When the voltage is increased it is seen that kinetics and current also increases but at the same time more electric power is consumed. In this experiment, the optimum voltage was determined to be 50V. At that time, nitrate nitrogen was removed by 94.9%.

Characteristics Evaluation on Welding Metal Zones Welded with Inconel 625 Filler Metal to Cast Steel for Piston Crown Material

  • Jeong, Jae-Hyun;Moon, Kyung-Man;Lee, Sung-Yul;Lee, Myeong-Hoon;Baek, Tae-Sil
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.5
    • /
    • pp.542-547
    • /
    • 2015
  • Since the oil price has been significantly jumped for several years, a heavy oil of low quality has been mainly used in the diesel engine of the merchant ship. Thus, a combustion chamber of the engine has been often exposed to severely corrosive environment more and more because temperature of the exhaust gas of the combustion chamber has been getting higher and higher with increasing of using the heavy oil of low quality. As a result, wear and corrosion of the engine parts such as exhaust valve, piston crown and cylinder head surrounded with combustion chamber are more serious compared to the other parts of the engine. Therefore, an optimum repair welding for these engine parts is very important to prolong their lifetime in a economical point of view. In this study, Inconel 625 filler metal were welded with GTAW method in the cast steel which would be generally used with piston crown material. And the corrosion properties of weld metal, heat affected and base metal zones were investigated using electrochemical methods such as measurement of corrosion potential, anodic polarization curves, cyclic voltammogram and impedance etc. in 35% $H_2SO_4$ solution. The weld metal and base metal zones exhibited the highest and lowest values of hardness respectively. Furthermore, the corrosion current density of the weld metal zone revealed the lowest value, having the highest value of hardness. The corrosive products with red color and local corrosion like as a pitting corrosion were considerably observed at the base metal zone, while these morphologies were not wholly observed in the weld metal zone. In particular, the polarization characteristics such as impedance, polarization curve and cyclic voltammogran associated with corrosion resistance property were well in good agreement with each other. Consequently, it is suggested that the mechanical and corrosion characteristics of the piston crown can be predominantly improved by repair welding method using the Inconel 625 electrode.

A Study on the Properties of Al doped ZnO (AZO) Thin Films Deposited by RF Magnetron Sputtering (RF 마그네트론 스퍼터링으로 증착된 Al이 도핑 된 ZnO (AZO) 박막의 특성에 대한 연구)

  • Yun, Eui-Jung;Jung, Myung-Hee;Park, Nho-Kyung
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.7
    • /
    • pp.8-16
    • /
    • 2010
  • In this paper, we investigated the effects of $O_2$ fraction on the properties of Al-doped ZnO (AZO) thin films prepared by radio frequency (RF) magnetron sputtering. Hall, photoluminescence (PL), and X-ray photoelectron spectroscopy (XPS) measurements revealed that the p-type conductivity was exhibited for AZO films with an $O_2$ fraction of 0.9 while the n-type conductivity was observed for films with $O_2$ fractions in range of 0 - 0.6. PL and XPS also showed that the acceptor-like defects, such as zinc vacancies and oxygen interstitials, increased in films prepared by an $O_2$ fraction of 0.9, resulting in the p-type conductivity in the films. Hall results indicated that AZO films prepared by $O_2$ fractions in range of 0 - 0.6 can be used for electrode layers in the applications of transparent thin film transistor. We concluded from the X-ray diffraction analysis that worse crystallinity with a smaller grain size as well as higher tensile stress was observed in the films prepared by a higher $O_2$ fraction, which is related to incorporation of more oxygen atoms into the films during deposition. The study of atomic force microscope suggested that the smoother surface morphology was observed in films prepared by using $O_2$ fraction, which causes the higher resistivity in those films, as evidenced by Hall measurements.

EEG Signal Classification Algorithm based on DWT and SVM for Driving Robot Control (주행로봇제어를 위한 DWT와 SVM기반의 EEG신호 분류 알고리즘)

  • Lee, Kibae;Lee, Chong Hyun;Bae, Jinho;Lee, Jaeil
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.8
    • /
    • pp.117-125
    • /
    • 2015
  • In this paper, we propose a classification algorithm based on the obtained EEG(Electroencephalogram) signal for the control of 'left' and 'right' turnings of which a driving system composed of EEG sensor, Labview, DAQ, Matlab and driving robot. The proposed algorithm uses features extracted from frequency band information obtained by DWT (Discrete Wavelet Transform) and selects features of high discrimination by using Fisher score. We, also propose the number of feature vectors for the best classification performance by using SVM(Support Vector Machine) classifier and propose a decision pending algorithm based on MLD (Maximum Likelihood Decision) to prevent malfunction due to misclassification. The selected four feature vectors for the proposed algorithm are the mean of absolute value of voltage and the standard deviation of d5(2-4Hz) and d2(16-32Hz) frequency bands of P8 channel according to the international standard electrode placement method. By using the SVM classifier, we obtained 98.75% accuracy and 1.25% error rate. Also, when we specify error probability of 70% for decision pending, we obtained 95.63% accuracy and 0% error rate by using the proposed decision pending algorithm.

Stabilization Performance Evaluation of Filter(pH) Using Ionic Water Generator (이온수기 필터(pH)의 안정화 성능평가)

  • Nam, Sangyep;Kwon, Yunjung
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.3
    • /
    • pp.199-205
    • /
    • 2015
  • This study is about ionic water generator filter Recently, a lot of people feel deep interest in health and drinking water. And there are various types of water. Ionic water generator is a system with special function, and can be classified as a medical device and should be manufactured after approval from the Food and Drug Administration. Basically ionized water is different from the packaged and stored water. When the tap water or ground water passes through the various filters of ionic water generator, it turns to the purified water of pH7 ~ 7.5 and we can electrolyze that water into anion and cation by diaphragm. And in negative electrode side, we can get alkaline water with calcium ($Ca^+$), potassium ($K^+$), magnesium ($Mg^+$), sodium ($Na^+$) for body. In general, we can change pH value from 5 to 9 of ionizer by controlling the level of electrolysis voltage in the ionizer. In general, 1stage (pH8), 2stage (pH8.5), 3stage (pH9), 4stage (pH9.5) are used as the alkaline ionized water, -1Stage (pH6.0), -2 stage (pH5.0) are used as the acidic water. But in early stage, the water that passed through filter was weakly alkaline water and that was problem. Therefore, when filter condition is stable, the pH and ORP value of water is different with the early one. the initial setting pH value of the ionizer was confirmed that changes significantly. In order to resolve this problem we need to wash filter for some period time and neutralize by acidification treatment of the filter.

Evaluation of the corrosion property on the welded zone of seawater pipe by A.C shielded metal arc welding (교류 피복아크 용접에 의한 해수 배관 용접부위의 부식 특성 평가)

  • Jeong, Jae-Hyun;Kim, Yun-Hae;Moon, Kyung-Man;Lee, Myeong-Hoon;Kim, Jin-Gyeong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.8
    • /
    • pp.877-885
    • /
    • 2013
  • A seawater pipe of the engine room in the ships is being surrounded with severely corrosive environments caused by fast flowing of the seawater, containing aggressive chloride ion and high conductivity etc.. Therefore, the leakage of the seawater from its pipe have been often occurred due to its local corrosion by aggressive chloride ions. Subsequently, its leakage area is usually welded by AC shielded metal arc welding with various electrodes. In this study, when the sea water pipe is welded with several types of electrodes such as E4301, E4311, E4313 and E4316, a difference of the corrosion resistance on the welding metal zones was investigated using an electrochemical method, observing microstructure, measuring polarization behaviors and hardness. The weld metal zone welded with E4313 electrode exhibited the lowest value of hardness compared to other weld metal zones. In addition, its zone indicated also the best corrosion resistance than those of other weld metal zones. Furthermore, all of the weld metal zones revealed a relatively better corrosion resistance than those of the base metal zones. and also showed higher hardness than the base metal zones.

Selective Removal of Calcium Ions from a Mixed Solution using Membrane Capacitive Seionization System (막결합 축전식 탈염장치를 이용한 혼합용액에서 칼슘이온의 선택적 제거)

  • Kim, Yu-Jin;Choi, Jae-Hwan
    • Applied Chemistry for Engineering
    • /
    • v.23 no.5
    • /
    • pp.474-479
    • /
    • 2012
  • Possibility of the selective removal of $Ca^{2+}$ ions from a mixed solution of $Na^{+}$ and $Ca^{2+}$ ions using membrane capacitive deionization (MCDI) was investigated. Adsorption equilibrium experiments were conducted to determine the selectivity of the CMX cation-exchange membrane toward $Ca^{2+}$ ions. In addition, desalination experiments for a mixed solution (5 meq/L NaCl + 2 meq/L $CaCl_{2}$) were performed using an MCDI cell. The adsorption equilibrium of CMX membrane showed that the equivalent fraction of $Ca^{2+}$ ions in the solution and the CMX membrane were 28.6 and 87.2%, respectively, which indicates the CMX membrane's high selectivity toward $Ca^{2+}$ ions. Desalination experiments were performed by applying a constant current to the MCDI cell until the cell potential reached 1.0 V. The amount of ions adsorbed did not significantly change as the applied current was changed. However, the equivalent fractions of $Ca^{2+}$ ions among the adsorbed ions were inversely proportional to the applied currents: 81.4, 78.4, 77.0, and 74.5% at 200, 300, 500, and $700\;A/m^{2}$ of applied current density, respectively. This result is attributed to the increased fraction of $Ca^{2+}$ ions adsorbed by the CMX membrane at lower applied current densities.

Structures and Double Layer Performances of Carbons Pyrolized from Carbon Oxides (산화탄소로부터 열분해한 탄소의 구조 및 전기이중층 거동)

  • Kim, Ick-Jun;Yang, Sunhye;Jeon, Min-Je;Moon, Seong-In;Kim, Hyun-Soo;An, Kye-Hyeok
    • Applied Chemistry for Engineering
    • /
    • v.18 no.5
    • /
    • pp.522-526
    • /
    • 2007
  • Structural features and electrochemical performances of cokes pyrolized from oxidized cokes were examined, and compared with KOH-activated coke. Needle cokes ($d_{002}=3.5{\AA} $), having a graphene layer structure, were changed to a single phase of graphite oxide after oxidation treatment with an acidic solution having an $NaCLO_3$/needle coke composition ratio of above 7.5, and the inter-layer distance of the oxidized coke was expanded to $6.9{\AA} $ with increasing oxygen content. After heating at $200^{\circ}C$, the oxidized coke was pyrolized to the graphene layer structure with inter-layer distance of $3.6{\AA} $. However, the change of the inter-layer distance of the needle coke was not observed in the KOH activation process. On the other hand, an intercalation of electrolyte ions into the pyrolized coke, observed at first charge, occurred at 1.0 V, in which the value was lower than that of KOH-activation coke. The cell capacitor using pyrolized coke exhibited a lower internal resistance of $0.57{\Omega}$ in 1 kHz, and a larger capacitance per weight and volume of 30.3 F/g and 26.9 F/ml at the two-electrode system in the potential range 0~2.5 V than those of the cell capacitor using KOH-activation of coke. This better electrochemical performance may be associated with structure defects in the graphene layer derived from the process of the inter-layer expansion and shrinkage.

Electrochemical Performances of Acid-Treated and Pyrolyzed Cokes According to Acid Treatment Time (산처리 시간별 산화 코크스와 열분해 코크스의 전기화학적 거동)

  • Kim, Ick-Jun;Yang, Sunhye;Jeon, Min-Je;Moon, Seong-In;Kim, Hyun-Soo
    • Applied Chemistry for Engineering
    • /
    • v.19 no.4
    • /
    • pp.407-412
    • /
    • 2008
  • As an activation procedure, in this study, the oxidation treatment of needle cokes with a dilute nitric acid and sodium chlorate $(NaClO_3)$, combined with heat treatment, was attempted. The structures of acid-treated and pyrolyzed coke were examined with XRD, FESEM, elemental analyzer, BET, and Raman spectroscopy. The behavior of double layer capacitance was investigated with the analysis of charge and discharge. The structure of needle coke treated with acid was revealed to a single phase of (001) diffraction peak after 24 h. On the other hand, thecoke oxidized by heat treatment was reduced to a graphite structure of (002) at $300^{\circ}C$. The distorted graphene layer structure, derived from the process of oxidation and reduction of the inter-layer, makes the pores by the electric field activation at the first charge, and generates the double layer capacitance from the second charge. The cell using pyrolyzed coke with 24 h acid treatment and $300^{\circ}C$ heat treatment exhibited the maximum capacitance per weight and volume of 33 F/g and 30 F/mL at the two-electrode system in the potential range of 0~2.5 V.