DOI QR코드

DOI QR Code

Removal of Nitrate Nitrogen for Batch Reactor by ZVI Bipolar Packed Bed Electrolytic Cell

영가철 충진 회분식 복극전해조에 의한 질산성 질소 제거

  • Received : 2010.09.13
  • Accepted : 2010.12.10
  • Published : 2011.04.30

Abstract

Nitrate nitrogen is common contaminant in groundwater aquifers, its concentration is regulated many countries below 10 mg/L as N (As per WHO standards) in drinking water. An attempt was made to get optimal results for the treatment of nitrate nitrogen in groundwater by conducting various experiments by changing the experimental conditions for ZVI bipolar packed bed electrolytic cell. From the experimental results it is evident that the nitrate nitrogen removal is more effective when the reactor conditions are maintained in acidic range but when the acidic environment changes to alkaline due to the hydroxide formed during the process of ammonia nitrogen there by increasing the pH reducing the hydrogen ions required for reduction which leads to low effectiveness of the system. In the ZVI bipolar packed bed electrolytic cell, the packing ratio of 0.5~1:1 was found to be most effective for the treatment of nitrate nitrogen because ZVI particles are isolated and individual particle act like small electrode with low packing ratio. It is seen that formation of precipitate and acceleration of clogging incrementally for packing ratio more than 2:1, decreasing the nitrate nitrogen removal rate. When the voltage is increased it is seen that kinetics and current also increases but at the same time more electric power is consumed. In this experiment, the optimum voltage was determined to be 50V. At that time, nitrate nitrogen was removed by 94.9%.

질산성 질소는 대표적인 지하수 오염물질로써 우리나라를 비롯한 여러 국가들이 음용수 중의 질산성 질소 농도를 WHO 권고기준인 10 mg/L as N 이하로 규제하고 있다. 본 연구에서는 처리하고자 하는 물질과의 접촉면적을 극대화 시켜줄 수 있는 영가철 충진 복극전해조를 이용하여 지하수 중의 질산성 질소를 처리하기 위해 다양하게 실험조건을 변화시켜 최적의 효율을 얻고자 하였다. 실험결과로서 영가철을 환원제로 사용할 때, 질산성 질소는 산성조건에서 좋은 제거효율을 보여주었으며, 산성조건을 유지시켜주지 않았을 때 암모니아성 질소로 환원되는 과정에서 수산화기 발생으로 pH가 증가하여 환원반응에 필요한 수소이온이 감소함으로 효율이 점차 감소하는 문제가 발생하였다. 복극전해조에서, 영가철과 주문진규사의 충진비는 0.5~1:1에서 제거효율이 가장 좋았으며 이는 각각의 영가철 입자가 미세전극으로 작용했기 때문이라고 판단된다. 충진비 2:1 이상에서는 점진적인 침전물의 형성 및 clogging의 가속화로 제거효율이 감소하였다. 인가전압이 상승할수록 제거효율이 높아졌으나 반응기 내 bypass current가 증가하는 것으로 확인되었으며 소비되는 전력량이 비례 이상으로 증가하였다. 본 실험에서는 최적 인가전압을 50 V로 결정하였고 그 때 질산성 질소를 94.9% 제거할 수 있었다.

Keywords

References

  1. 윤철종, 곽명화, 박승조(2004) 충전 복극전해조에 의한 암모니아성 질소제거. 대한환경공학회지, 대한환경공학회, Vol. 26, No. 7, pp. 767-771.
  2. 정연욱(2006) 역전 전기투석법과 전기분해법을 이용한 원자력 발전 폐수 중의 COD/T-N 동시 제거 연구. 석사학위논문, 경기대학교.
  3. Alowitz, M.J. and Scherer, M.M. (2002) Kinetics of nitrate, nitrite, and Cr(VI) reduction by iron metal. Environ Sci Technol, Vol. 36(3), pp. 299-306. https://doi.org/10.1021/es011000h
  4. Bonvin, G. and Comninellis, Ch. (1994) Scale-up of bipolar electrode stack dimensionless number for current bypass estimation. Journal of Applied Electrochemistry, Vol. 24, No. 6, pp. 469-474. https://doi.org/10.1007/BF00249844
  5. Canter, L.W. (1997) Nitrates in groundwater. CRC Press, Boca Raton, pp. 1-109.
  6. Huang, C.P., Wang, H.W., and Chiu, P.C. (1998) Nitrate reduction by metallic iron. Water Research, Vol. 32, pp. 2257-2264. https://doi.org/10.1016/S0043-1354(97)00464-8
  7. Huang, Y.H. and Zhang, T.C. (2004) Effects of low pH on nitrate reduction by iron powder. Water Research, Vol. 38(11), pp. 2631-2642. https://doi.org/10.1016/j.watres.2004.03.015
  8. Juvekar, V.A., Patil, R.S., Gurumoorthy, A.V.P., and Contractor, A.Q. (2009) Analysis of multiple reactions on a bipolar electrode. Ind. Eng. Chem. Res., Vol. 48(21), pp. 9441-9456. https://doi.org/10.1021/ie900437n
  9. Koparal, A.S. and Ogutveren, U.B. (2002) Removal of nitrate from water by electroreduction and electrocoagulation. Journal of Hazardous Materials, Vol. 89(1), pp. 83-94. https://doi.org/10.1016/S0304-3894(01)00301-6
  10. Liou, Y.H., Lo, S.L., Lin, C.J., Kuan W.H., and Weng S.C. (2005) Effects of iron surface pretreatment on kinetics of aqueous nitrate reduction. Journal of Hazardous Materials, Vol. 126, pp. 189-194. https://doi.org/10.1016/j.jhazmat.2005.06.038
  11. Peel, J.W., Reddy, K.J., Sullivan, B.P., and Bowen, J.M. (2003) Electrocatalytic reduction of nitrate in water. Water Research, Vol. 37, pp. 2512-2519. https://doi.org/10.1016/S0043-1354(03)00008-3
  12. Scherer, M.M., Balko, B.A., and Tratnyek, P.G. (1998) The role of oxides in reduction reactions at the metal-water interface. Mineral- water interfacial reactions : kinetics and mechanism. ACS Symp. Ser. 715 Washington, DC, American Chemical Society. pp. 301-322.
  13. Siantar, D.P., Schreier, C.G., Chou, C.S., and Reinhard, M. (1996) Treatment of 1,2-dibromo-3-chloropropane and nitrate contaminated water with ZVI or hydrogen/palladium catalysts. Water Research, Vol. 30, pp. 2315-2322. https://doi.org/10.1016/0043-1354(96)00120-0
  14. Tratnyek, P.G., Johnson, T.L., and Schattauer, A. (1995) Interfacial phenomena affecting contaminant remediation with zero-valent iron metal. In Emerging Technologies in Hazardous Waste Management VII, pp. 589-592. American Chemical Society, Atlanta, GA.