• 제목/요약/키워드: Electrochemical-based model

검색결과 77건 처리시간 0.024초

탄소나노튜브 복합 소재를 이용한 스트레인 센서 (Strain Sensors Using Carbon Nanotube Composites)

  • 강인필;;최경락;최연선;이종원
    • 한국소음진동공학회논문집
    • /
    • 제16권7호
    • /
    • pp.762-768
    • /
    • 2006
  • To address the need for new intelligent sensing of systems, this study presents a novel strain sensor based on piezoresistivity of carbon nanotube (CNT) and its nanocomposites. Fabrication and characterization of the carbon nanocomposite material are discussed and an electrical model of the CNT strain sensor was derived based on electrochemical impedance spectroscopy analysis and strain testing. The dynamic response of the sensor on a vibrating beam was simulated using numerical analysis and it was compared with experimental test. The simulation showed good agreement with the strain response of the actual sensor.

탄소나노튜브 복합 소재를 이용한 스트레인 센서 (Strain Sensors Using Carbon Nanotube Composites)

  • 강인필;;이종원;최경락;최연선
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.930-935
    • /
    • 2006
  • To address the need for new intelligent sensing of systems, this study presents a novel strain sensor based on peizoresistivity of carbon nanotube (CNT) and its nanocomposites. Fabrication and characterization of the carbon nanocomposite material are discussed and an electrical model of the CNT strain sensor was derived based on electrochemical impedance spectroscopy analysis and strain testing. The dynamic response of the sensor on a vibrating beam was simulated using numerical analysis and it was compared with experimental test. The simulation showed good agreement with the strain response of the actual sensor.

  • PDF

The effective properties of saturated concrete healed by EDM with the ITZs

  • Chen, Qing;Jiang, Zhengwu;Zhu, Hehua;Ju, J.W.;Yan, Zhiguo;Li, Haoxin
    • Computers and Concrete
    • /
    • 제21권1호
    • /
    • pp.67-74
    • /
    • 2018
  • A differential scheme based micromechanical framework is proposed to obtain the effective properties of the saturated concrete repaired by the electrochemical deposition method (EDM) considering the interfacial transition zone (ITZ) effects. The constituents of the repaired concrete are treated as different phases, consisting of (micro-)cracks, (micro-)voids and (micro-)pores (occupied by water), deposition products, intrinsic concrete made up by the three traditional solid phases (i.e., mortar, coarse aggregates and their interfaces) and the ITZs. By incorporating the composite sphere assemblage (CSA) model and the differential approach, a new multilevel homogenization scheme is utilized to quantitatively estimate the mechanical performance of the repaired concrete with the ITZs. The CSA model is modified to obtain the effective properties of the equivalent particle, which is a three-phase composite made up of the water, deposition products and the ITZs. The differential scheme is employed to reach the equivalent composite of the concrete repaired by EDM considering the ITZ effects. Moreover, modification procedures considering the ITZ effects are presented to attain the properties of the repaired concrete in the dry state. Results in this study are compared with those of the existing models and the experimental data. It is found that the predictions herein agree better with the experimental data than the previous models.

Application of Monte Carlo Simulation to Intercalation Electrochemistry I. Thermodynamic Approach to Lithium Intercalation into LiMn2O4 Electrode

  • Kim, Sung-Woo;Pyun, Su-Il
    • 전기화학회지
    • /
    • 제5권2호
    • /
    • pp.79-85
    • /
    • 2002
  • 열역학적 관점에서 몬테 카를로 방법의 전기화학적 리튬 인터칼레이션에로의 응용에 대하여 다루었다. 우선 통계 열역학의 앙상블, Ising 및 lattice gas 모델의 기본 개념을 간단히 소개하였고, lattice gas 모델에 근거한 몬테카를로 방법을 사용하여 전이금속 산화물내로의 리튬 인터칼레이션의 열역학을 해석하였다. 특히 $LiMn_2O_4$전극에 대해 전극 포텐셜 곡선과 리튬 이온의 부분 몰 내부에너지와 엔트로피와 같은 열역학적 특성을 다루었고, 이로부터 리튬 인터칼레이션의 전기화학분야에서 몬테 카를로 방법의 유용성을 확인하였다

Fundamental Small-signal Modeling of Li-ion Batteries and a Parameter Evaluation Using Levy's Method

  • Zhang, Xiaoqiang;Zhang, Mao;Zhang, Weiping
    • Journal of Power Electronics
    • /
    • 제17권2호
    • /
    • pp.501-513
    • /
    • 2017
  • The fundamental small-signal modeling of lithium-ion (Li-ion) batteries and a parameter evaluation approach are investigated in this study to describe the dynamic behaviors of small signals accurately. The main contributions of the study are as follows. 1) The operational principle of the small signals of Li-ion batteries is revealed to prove that the sinusoidal voltage response of a Li-ion battery is a result of a sinusoidal current stimulation of an AC small signals. 2) Three small-signal measurement conditions, namely stability, causality, and linearity, are proved mathematically proven to ensure the validity of the frequency response of the experimental data. 3) Based on the internal structure and electrochemical operational mechanism of the battery, an AC small-signal model is established to depict its dynamic behaviors. 4) A classical least-squares curve fitting for experimental data, referred as Levy's method, are introduced and developed to identify small-signal model parameters. Experimental and simulation results show that the measured frequency response data fit well within reading accuracy of the simulated results; moreover, the small-signal parameters identified by Levy's method are remarkably close to the measured parameters. Although the fundamental and parameter evaluation approaches are discussed for Li-ion batteries, they are expected to be applicable for other batteries.

Prediction of ions migration behavior in mortar under 2-D ALMT application to inhibit ASR

  • Liu, Chih-Chien;Kuo, Wen-Ten
    • Computers and Concrete
    • /
    • 제14권3호
    • /
    • pp.263-277
    • /
    • 2014
  • This study investigated four electric field configurations of two-dimensional accelerate lithium migration technique (ALMT), including line-to-line, plane-to-line, contour-to-line and plane-to-plane, and analyzed the ion migration behavior and efficiency. It was found that the free ion distribution diagram and voltage distribution diagram were similar, and ions migrated in the power line direction. The electrode modules were used for the mortar specimen with w/c ratio of 0.5. The effectively processed areas accounted for 14.1%, 39.0%, 49.4% and 51.4% of total area respectively on Day 28. Larger electrode area was more advantageous to ion migration. In addition, it was proved that the two-dimensional electric field could be divided into different equifield line active regions, and regarded as affected by one-dimensional electric field, and the ion migration results in various equifield line active regions were predicted by using the duration analysis method based on the theoretical model of ion migration obtained from one-dimensional test.

온도측정에 의한 히트파이프의 수명예측 (Prediction of Life of Heat Pipes by Measuring Temperature Distribution)

  • 신흥태;;이윤표
    • 대한기계학회논문집B
    • /
    • 제23권7호
    • /
    • pp.856-863
    • /
    • 1999
  • The thermal performance degradation of heat pipes is caused by the non-condensable gas generation mainly due to the electrochemical corrosion which results from the reaction of working fluids with tube materials. In this study, a simplified method described below was proposed to estimate the life of heat pipes concerning the non-condensable gas generation. The temperature distributions at the outer surface of heat pipes was measured, and based on them the amount of non-condensable gas of hydrogen was estimated. Applying it to the Arrhenius model, the mass generation of hydrogen and the volume occupied by the gas In heat pipes could be estimated for an operating temperature and time. Moreover, this simplified method was applied to the accelerated life test of nine methanol-stainless steel heat pipe samples.

Electrical Modeling of 10kW PEMFC

  • Lee, Jin-Mok;Park, Ga-Woo;Choi, Jae-Ho
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2008년도 추계학술대회 논문집
    • /
    • pp.193-195
    • /
    • 2008
  • As arising the cost and decreasing of gasoline and fossil fuel, renewable energy sources such as photovoltaics, wind and fuel cell have been interested. Among of them, PEM fuel cells are good energy sources to provide reliable power at steady state regardless of weather, time of day and location as long as the fuel and air are supplied, but they cannot respond to electrical load transients as fast as desired. This is mainly due to their slow internal electrochemical and thermodynamic responses. Therefore, to use the fuel cells with high efficiency, this paper finds characteristic curve and understand operation of PEMFC based on three theoretical approaches such as activation, ohmic and concentration and make the model using MATLAB. That result was compared with real system to certify.

  • PDF

실내환경 모니터링시스템을 위한 무선 센서네트워크에서의 플러딩 방식의 질의모델 설계 및 구현 (Design and implementation of flooding-based query model in wireless sensor networks for indoor environmental monitoring system)

  • 이승철;정상중;이영동;정완영
    • 센서학회지
    • /
    • 제17권3호
    • /
    • pp.168-177
    • /
    • 2008
  • An indoor environmental monitoring system using IEEE 802.15.4 based wireless sensor network is proposed to monitor the amount of pollutant entering to the room from outside and also the amount of pollutant that is generated in indoor by the building materials itself or human activities. Small-size, low-power wireless sensor node and low power electrochemical sensor board is designed to measure the condition of indoor environment in buildings such as home, offices, commercial premises and schools. In this paper, two query models, the broadcasting query protocol and flooding query protocol, were designed and programmed as a query-based routing protocol in wireless sensor network for an environment monitoring system. The flooding query routing protocol in environment monitoring is very effective as a power saving routing protocol and reliable data transmission between sensor nodes.

Surface Observation of Mg-HA Coated Ti-6Al-4V Alloy by Plasma Electrolytic Oxidation

  • Yu, Ji-Min;Choe, Han-Cheol
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2016년도 추계학술대회 논문집
    • /
    • pp.198-198
    • /
    • 2016
  • An ideal orthopedic implant should provide an excellent bone-implant connection, less implant loosening and minimum adverse reactions. Commercial pure titanium (CP-Ti) and Ti alloys have been widely utilized for biomedical applications such as orthopedic and dental implants. However, being bioinert, the integration of such implant in bone was not in good condition to achieve improved osseointegraiton, there have been many efforts to modify the composition and topography of implant surface. These processes are generally classified as physical, chemical, and electrochemical methods. Plasma electrolytic oxidation (PEO) as an electrochemical route has been recently utilized to produce this kind of composite coatings. Mg ion plays a key role in bone metabolism, since it influences osteoblast and osteoclast activity. From previous studies, it has been found that Mg ions improve the bone formation on Ti alloys. PEO is a promising technology to produce porous and firmly adherent inorganic Mg containing $TiO_2$($Mg-TiO_2$ ) coatings on Ti surface, and the amount of Mg introduced into the coatings can be optimized by altering the electrolyte composition. In this study, a series of $Mg-TiO_2$ coatings are produced on Ti-6Al-4V ELI dental implant using PEO, with the substitution degree, respectively, at 0, 5, 10 and 20%. Based on the preliminary analysis of the coating structure, composition and morphology, a bone like apatite formation model is used to evaluate the in vitro biological responses at the bone-implant interface. The enhancement of the bone like apatite forming ability arises from $Mg-TiO_2$ surface, which has formed the reduction of the Mg ions. The promising results successfully demonstrate the immense potential of $Mg-TiO_2$ coatings in dental and biomaterials applications.

  • PDF