• Title/Summary/Keyword: Electrochemical study

검색결과 2,360건 처리시간 0.035초

Properties of N-butyl-N-methyl-pyrrolidinium Bis(trifluoromethanesulfonyl) Imide Based Electrolytes as a Function of Lithium Bis(trifluoromethanesulfonyl) Imide Doping

  • Kim, Jae-Kwang;Lim, Du-Hyun;Scheers, Johan;Pitawala, Jagath;Wilken, Susanne;Johansson, Patrik;Ahn, Jou-Hyeon;Matic, Aleksandar;Jacobsson, Per
    • 전기화학회지
    • /
    • 제14권2호
    • /
    • pp.92-97
    • /
    • 2011
  • In this study we have investigated the Li-ion coordination, thermal behavior and electrochemical stability of N-butyl-N-methyl-pyrrolidinium bis(trifluoromethanesulfonyl)imide ($Py_{14}TFSI$) with lithium bis(trifluoromethanesulfony)imide (LiTFSI) doping intended for use as electrolytes for lithium batteries. The ionic conductivity is reduced and glass transition temperature ($T_g$) increases with LiTFSI doping concentration. Also, the electrochemical stability increases with LiTFSI doping. A high LiTFSI doping could enhance the electrochemical stability of electrolytes for lithium batteries, whereas the decrease in the ionic conductivity limits the capacity of the battery.

Improving the Capacity Retention of LiNi0.8Co0.2O2by ZrO2 Coating

  • Lee Sang-Myoung;Oh Si-Hyoung;Lee Byung-Jo;Cho Won-Il;Jang Ho
    • 전기화학회지
    • /
    • 제9권1호
    • /
    • pp.6-9
    • /
    • 2006
  • The effect of $ZrO_2$-coating on the electrochemical properties of the cathode material $LiNi_{0.8}Co_{0.2}O_2$ was investigated using EPMA, TEM, and EIS. In particular, we facused on the distribution of the $ZrO_2$ on the particle surface to study the relation between electrochemical properties of the coated cathode and the distribution of the coating materials in the particle. Based on the results from the composition analysis and electrochemical tests, it was found that the coating layer consisted of nano-sized $ZrO_2$ particles attached non-uniformly on the particle surface and the $ZrO_2$ layer significantly improved the electrochemical properties of the cathode by suppressing the impedance growth at the interface between the electrodes and the electrolyte.

전기화학적 활성과 내구성이 높은 Ti/IrO2/Ta2O5 전극 제조 (Fabrication of Ti/IrO2/Ta2O5 Electrode with High Electrochemical Activity and Long Lifetime)

  • 김다은;유재민;이용호;박대원
    • 한국물환경학회지
    • /
    • 제33권1호
    • /
    • pp.34-39
    • /
    • 2017
  • Under a corrosive environment, electrodes that are applied in the water-treatment system need not only very high electrochemical activity for fast reactions, but also high durability for cost saving. Therefore, the fabrication condition of iridium electrodes was examined to produce a more durable iridium electrode in this study. Tantalum was selected as a binder to enhance the durability of the iridium electrode. Investigation of the weight ratio between the catalyst and the binder to improve electrochemical activity was performed. Also, to compare the effect of the different coating amounts of the catalyst, the results of CV (Cyclic Voltammetry) and EIS (Electrochemical Impedance Spectroscopy) were discussed. Furthermore, an ALT(Accelerated Lifetime Test) was designed and applied to the electrodes to determine the conditions for highly durable electrode fabrication.

전기화학적 전착에 의한 ZnSe박막 구조 및 발광특성 (Structural and luminescent properties of ZnSe thin films by electrochemical deposition)

  • 김환동;최길호;윤도영
    • 반도체디스플레이기술학회지
    • /
    • 제7권4호
    • /
    • pp.19-22
    • /
    • 2008
  • Thin film has been an increasing important subject of intensive research, owing to the fact that these films possess desirable optical, electrical and electrochemical properties for uses in many semi-conducting nano-crystal applications, such as light-emitting diodes, lasers and solar cell applications. Here, ZnSe thin films were deposited by electrochemical method for the applications of light emitting diode. Electrochemical deposition of ZnSe thin film is not easy, because of the high difference of reduction potential between zinc ion and selenium acid. In order to handle the band gap of ZnSe crystal thin films easily, electrochemical methods are promising to manufacture these films economically. Therefore we have investigated the present study to characterize zinc selenide thin films deposited on ITO glass plates electrochemically. The luminescent properties of ZnSe films have been evaluated by UV-Vis spectrometer and luminescence spectrometer. And the morphology of the film surface has been discussed qualitatively from SEM images.

  • PDF

Li Ion Diffusivity and Improved Electrochemical Performances of the Carbon Coated LiFePO4

  • Park, Chang-Kyoo;Park, Sung-Bin;Oh, Si-Hyung;Jang, Ho;Cho, Won-Il
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권3호
    • /
    • pp.836-840
    • /
    • 2011
  • This study examines the effects of a carbon coating on the electrochemical performances of $LiFePO_4$. The results show that the capacity of bare $LiFePO_4$ decreased sharply, whereas the $LiFePO_4$/C shows a well maintained initial capacity. The Li ion diffusivity of the bare and carbon coated $LiFePO_4$ is calculated using cyclic voltammetry (CV) to determine the correlation between the electrochemical performance of $LiFePO_4$ and Li diffusion. The diffusion constants for $LiFePO_4$ and $LiFePO_4$/C measured from CV are $6.56{\times}10^{-16}$ and $2.48{\times}10^{-15}\;cm^2\;s^{-1}$, respectively, indicating considerable increases in diffusivity after modifications. The Li ion diffusivity (DLi) values as a function of the lithium content in the cathode are estimated by electrochemical impedance spectroscopy (EIS). The effects of the carbon coating as well as the mechanisms for the improved electrochemical performances after modification are discussed based on the diffusivity data.

적층가공 방식으로 제조된 CP-Ti의 캐비테이션 중 부식에 대한 전기화학적 접근 (Electrochemical Approach on the Corrosion During the Cavitation of Additive Manufactured Commercially Pure Titanium)

  • 김기태;장현영;김영식
    • Corrosion Science and Technology
    • /
    • 제17권6호
    • /
    • pp.310-316
    • /
    • 2018
  • The effect of passive film on corrosion of metals and alloys in a static corrosive environment has been studied by many researchers and is well known, however few studies have been conducted on the electrochemical measurement of metals and alloys during cavitation corrosion conditions, and there are no test standards for electrochemical measurements 'During cavitation' conditions. This study used commercially additive manufactured(AM) pure titanium in tests of anodic polarization, corrosion potential measurements, AC impedance measurements, and repassivation. Tests were performed in 3.5% NaCl solution under three conditions, 'No cavitation', 'After cavitation', and 'During cavitation' condition. When cavitation corrosion occurred, the passive current density was greatly increased, the corrosion potential largely lowered, and the passive film revealed a small polarization resistance. The current fluctuation by the passivation and repassivation phenomena was measured first, and this behavior was repeatedly generated at a very high speed. The electrochemical corrosion mechanism that occurred during cavitation corrosion was based on result of the electrochemical properties 'No cavitation', 'After cavitation', and 'During cavitation' conditions.

Hygroscopicity of 1:2 Choline Chloride:Ethylene Glycol Deep Eutectic Solvent: A Hindrance to its Electroplating Industry Adoption

  • Brusas, John Raymund;Dela Pena, Eden May B.
    • Journal of Electrochemical Science and Technology
    • /
    • 제12권4호
    • /
    • pp.387-397
    • /
    • 2021
  • Deep eutectic solvents have been established as feasible metal electroplating solvent alternatives over traditional toxic aqueous plating baths. However, water, either added intentionally or unintentionally, can significantly influence the solvent's physical properties and performance, thereby hindering its industry application. In this study, the hygroscopicity, or the ability to absorb moisture from the environment, of synthesized ethaline (1:2 choline chloride:ethylene glycol) was investigated. The kinematic viscosity, electrical conductivity, electrochemical window, and water content of ethaline were monitored over a 2-week period. Karl Fischer titration tests showed that ethaline exposed to the atmosphere displayed significant hygroscopicity compared to its unexposed counterpart. 1H NMR spectroscopy revealed that water vapor was readily absorbed at the surface due to the hydrophilic groups present in the ethaline molecule. Water uptake resulted in the decrease in viscosity, increase in electrical conductivity and narrowing of the electrochemical window of ethaline. Solution heating at 100℃ removed the absorbed moisture and allowed the recovery of the solvent's initial properties.

Electrodeposition of Ni-W/Al2O3 Nano-Composites and the Influence of Al2O3 Incorporation on Mechanical and Corrosion Resistance Behaviours

  • M. Ramaprakash;R. Nivethida;A. Muthukrishnan;A. Jerom Samraj;M. G. Neelavannan;N. Rajasekaran
    • Journal of Electrochemical Science and Technology
    • /
    • 제14권4호
    • /
    • pp.377-387
    • /
    • 2023
  • Ni-W/Al2O3 nano-composites were electrodeposited on mild steel substrate for mechanical and corrosion resistance applications. This study focused on the preparation of Ni-W/Al2O3 nano-composite coating with various quantity of Al2O3 incorporations. The addition of Al2O3 in the electrolytes were varied from 1-10 g/L in electrolytes and the Al2O3 incorporation in Ni-W/Al2O3 nano-composite coatings were obtained from 1.82 to 13.86 wt.%. The incorporation of Al2O3 in Ni-W alloy matrix influenced the grain size, surface morphology and structural properties were observed. The distributions of Al2O3 particle in alloy matrix were confirmed using electron microscopy (FESEM and TEM) and EDAX mapping analysis. The crystal structure informations were studied using X-ray diffraction method and it confirms that the deposits having cubic crystal structure. The better corrosion rate (0.87 mpy) and microhardness (965 HV) properties were obtained for the Ni-W/Al2O3 nano-composite coating with 13.86 wt.% of Al2O3 incorporations.

토질조건에 따른 납 오염토양의 Electrokinetic 정화 효율

  • 김병일;조용실;한상재;김수삼
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2002년도 총회 및 춘계학술발표회
    • /
    • pp.34-37
    • /
    • 2002
  • In this study, electrochemical characteristics variation and removal efficiency with initial pH and mineral compositions during electrokinetic remediation of lead contaminated soils were investigated. Test results showed that heavy metal transportation affected by soil characteristics and electrochemical characteristics varied during electrokinetic remediation. Therefore, in the application of enhanced electrokinetic remediation technique to increase removal efficiency, discrete selection of enhanced technique with characteristics of targeted soil were needed.

  • PDF

점 전극을 이용한 미세전해가공 기구의 고찰 (A study on the mechanism of the Electrochemical micromachining using point electrode method)

  • 이승훈;박규열
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 추계학술대회 논문집
    • /
    • pp.906-909
    • /
    • 2000
  • To improve dimension accuracy and make very small parts are one of the major purpose on the electrochemical micromachining. This paper introduce a small machine tool by using the point electrode. That has a data acquisition system for gathering applied electric condition between the gap. Point electrode on this system was made by this method as well. It was found that variable phenomena occurred through the acquired V-I curve on the process.

  • PDF