Browse > Article
http://dx.doi.org/10.33961/jecst.2020.01522

Hygroscopicity of 1:2 Choline Chloride:Ethylene Glycol Deep Eutectic Solvent: A Hindrance to its Electroplating Industry Adoption  

Brusas, John Raymund (Sustainable Electrochemical Technologies Laboratory, Department of Mining, Metallurgical and Materials Engineering, College of Engineering, University of the Philippines Diliman)
Dela Pena, Eden May B. (Sustainable Electrochemical Technologies Laboratory, Department of Mining, Metallurgical and Materials Engineering, College of Engineering, University of the Philippines Diliman)
Publication Information
Journal of Electrochemical Science and Technology / v.12, no.4, 2021 , pp. 387-397 More about this Journal
Abstract
Deep eutectic solvents have been established as feasible metal electroplating solvent alternatives over traditional toxic aqueous plating baths. However, water, either added intentionally or unintentionally, can significantly influence the solvent's physical properties and performance, thereby hindering its industry application. In this study, the hygroscopicity, or the ability to absorb moisture from the environment, of synthesized ethaline (1:2 choline chloride:ethylene glycol) was investigated. The kinematic viscosity, electrical conductivity, electrochemical window, and water content of ethaline were monitored over a 2-week period. Karl Fischer titration tests showed that ethaline exposed to the atmosphere displayed significant hygroscopicity compared to its unexposed counterpart. 1H NMR spectroscopy revealed that water vapor was readily absorbed at the surface due to the hydrophilic groups present in the ethaline molecule. Water uptake resulted in the decrease in viscosity, increase in electrical conductivity and narrowing of the electrochemical window of ethaline. Solution heating at 100℃ removed the absorbed moisture and allowed the recovery of the solvent's initial properties.
Keywords
Deep Eutectic Solvents; Ionic Liquids; Hygroscopicity; Ethaline;
Citations & Related Records
연도 인용수 순위
  • Reference
1 E.L. Smith, J.C. Barron, A.P. Abbott, and K.S. Ryder, Anal. Chem., 2009, 81(20), 8466-8471.   DOI
2 F. Endres, S. Zein, and E. Abedin, Phys. Chem. Chem. Phys., 2006, 8(18), 2101-2116.   DOI
3 Y. Chen, D. Yu, W. Chen, L. Fu, and T. Mu, Phys. Chem. Chem. Phys., 2019, 21(5), 2601-2610.   DOI
4 Q. Li, J. Jiang, G. Li, W. Zhao, X. Zhao, and T. Mu, Sci. China Chem., 2016, 59(5), 571-577.   DOI
5 C. D. Agostino, R. C. Harris, A. P. Abbott, F. Gladden, and M. D. Mantle, Phys. Chem. Chem. Phys., 2011, 13(48), 21383-21391.   DOI
6 A. P. Abbott, J. C. Barron, K. S. Ryder, and D. Wilson, Chem. A Eur. J., 2007, 13, 6495-6501.   DOI
7 G. Garc, S. Aparicio, R. Ullah, and M. Atilhan, Energy Fuels, 2015, 29, 2616-2644.   DOI
8 E. Olson, and P. Buhlmann, J. Electrochem. Soc., 2013, 160(2), A320-A323.   DOI
9 A. Abdullah and A. Barzinjy, ZANCO J. Pure Appl. Sci., 2016, 28(2), 47-55.
10 D. Yue, Y. Jia, Y. Yao, J. Sun, and Y. Jing, Electrochim. Acta, 2012, 65(30), 30-36.   DOI
11 H. Ohno, Electrochemical Aspects of Ionic Liquids, 2005.
12 M. Rusdi, Y. Moroi, and H. Nakahara, Langmuir, 2005, 21(16), 7308-7310.   DOI
13 F. Liu, Y. Deng, X. Han, W. Hu, and C. Zhong, J. Alloys Compd., 2016, 654, 163-170.   DOI
14 C. Du, B. Zhao, X. Chen, N. Birbilis, and H. Yang, Sci. Rep., 2016, 6(1), 1-14   DOI
15 O. S. Hammond, D. T. Bowron, and K. J. Edler, Angew. Chem. Int. Ed., 2017, 56(33), 9782-9785.   DOI
16 N. R. Babij, E. O. Mccusker, G. T. Whiteker, B. Canturk, N. Choy, L. C. Creemer, C. V. De Amicis, N. M. Hewlett, P. L. Johnson, J. A. Knobelsdorf, F. Li, B. A. Lorsbach, B. M. Nugent, S. J. Ryan, M. R. Smith, Q. Yang, Org. Process Res. Dev., 2016, 20(3), 661-667.   DOI
17 A. P. Abbott, A. Ballantyne, R. C. Harris, J. A. Juma, and K. S. Ryder, Electrochim. Acta, 2015, 176, 718-726.   DOI
18 N. M. Pereira, C. M. Pereira, J. P. Araujo, and A. Fernando Silva, J. Electroanal. Chem., 2017, 801, 545-551.   DOI
19 P. Sebastian, E. Valles, and E. Gomez, Electrochim. Acta, 2013, 112, 149-158.   DOI
20 F. Zhao, S. Franz, A. Vicenzo, M. Bestetti, F. Venturini, and P. L. Cavallotti, Electrochim. Acta, 2013, 114, 878-888.   DOI
21 A. P. Abbott, A. Ballantyne, R. C. Harris, J. A. Juma, and K. S. Ryder, Phys. Chem. Chem. Phys., 2017, 19(4), 3219-3231.   DOI
22 A. A. Kityk, D. A. Shaiderov, E. A. Vasil'eva, V. S. Protsenko, and F. I. Danilov, Electrochim. Acta, 2017, 245, 133-145.   DOI
23 G. Vargas, J. Lopez, A. P. Garcia, and J. Cerda, ISES Conf. Proc., 2016.
24 S. Salome, N. M. Pereira, E. S. Ferreira, C. M. Pereira, and A. F. Silva, J. Electroanal. Chem., 2013, 703, 80-87.   DOI
25 G. Saravanan and S. Mohan, Int. J. Electrochem. Sci., 2011, 6, 1468-1478.
26 Y. Koga, P. Westh, K. Nishikawa, and S. Subramanian, J. Phys. Chem. B, 2011, 115(12), 2995-3002.   DOI
27 V.S. Protsenko, L.S. Bobrova, A.S. Baskevich, S.A. Korniy, F.I. Danilov, J. Chem. Technol. Metall., 2018, 53(5), 906-915.
28 D.C. McCalman, L. Sun, Y. Zhang, J.F. Brennecke, E.J. Maginn, W.F. Schneider, J. Phys. Chem. B, 2015, 119(19), 6018-6023.   DOI
29 E. A. Mernissi Cherigui, K. Sentosun, P. Bouckenooge, H. Vanrompay, S. Bals, H. Terryn, and J. Ustarroz, J. Phys. Chem. C, 2017, 121(17), 9337-9347.   DOI
30 A.P. Abbott, and K.J. McKenzie, Phys. Chem. Chem. Phys., 2006, 8(37), 4265-4279.   DOI
31 P. Sebastian, E. Valles, and E. Gomez, Electrochim. Acta, 2014, 123, 285-295.   DOI
32 I. Delso, C. Lafuente, J. Munoz-Embid, and M. Artal, J. Mol. Liq., 2019, 290, 111236.   DOI
33 L. Cammarata, S. G. Kazarian, P. A. Salter, and T. Welton, Phys. Chem. Chem. Phys., 2001, 3(23), 5192- 5200.   DOI
34 A.M.M. Sousa, H.K.S. Souza, L. Nicholas, C-K Liu, M.P. Goncalves, and LS Liu, Carbohydr. Polym., 2014, 111, 206-214.   DOI
35 A. P. Abbott, G. Capper, D. L. Davies, R. K. Rasheed, and V. Tambyrajah, Chem. Commun., 2003, (1), 70-71.
36 R. J. Abraham, J. J. Byrne, L. Griffiths, and R. Koniotou, Magn. Reson. Chem., 2005, 43, 611-624.   DOI
37 O. S. Hammond, D. T. Bowron, and K. J. Edler, Angew. Chem. Int. Ed., 2017, 129, 9914-9917.   DOI
38 A. Pandey, R. Rai, M. Pal, and S. Pandey, Phys. Chem. Chem. Phys., 2014, 16, 1559-1568.   DOI
39 Y. Cao, Y. Chen, X. Sum, Z. Zhang, and T. Mu, Phys. Chem. Chem. Phys., 2012, 14(35), 12252-12262.   DOI
40 C. D'Agostino, L. F. Gladden, M. D. Mantle, A. P. Abbott, E. I. Ahmed, A. Y. M. Al-Murshedi, and R. C. Harris, Phys. Chem. Chem. Phys., 2015, 17, 21383-21391.
41 M. Mousavi, A. Dittmer, and B. Wilson, J. Electrochem. Soc., 2015,162(12), A2250-A2258.   DOI
42 E. L. Smith, A. P. Abbott, and K. S. Ryder, Chem. Rev., 2014, 114(21), 11060-11082.   DOI
43 A. Abbott, F. Endres and D. R. Macfarlane, Electrodeposition from Ionic Liquids, 2017.
44 S. Mishra, and R. N. Bharagava, J. Environ. Sci. Heal. Part C, 2016, 34(1), 1-32.   DOI
45 A. P. Abbott, K. S. Ryder, and U. Konig, Trans. IMF, 2008, 86(4), 196-204.   DOI
46 A. P. Abbott, K. El Ttaib, K. S. Ryder, and E. L. Smith, Trans. IMF, 2008, 86(4), 234-240.   DOI
47 J. Zhang, C. Gu, Y. Tong, J. Gou, X. Wang, and J. Tu, RSC Adv., 2015, 5(87), 71268-71277.   DOI
48 L. S. Bobrova, F. I. Danilov, and V. S. Protsenko, J. Mol. Liq., 2016, 223, 48-53.   DOI
49 V. S. Protsenko, L. S. Bobrova, A. S. Baskevich, S. A. Korniy, and F. I. Danilov, J. Chem. Technol. Metall., 2018, 53(5), 906-915.
50 L. I. N. Tome, V. Baiao, W. da Silva, and C. M. A. Brett, Appl. Mater. Today, 2018, 10, 30-50.   DOI