Browse > Article
http://dx.doi.org/10.14773/cst.2018.17.6.310

Electrochemical Approach on the Corrosion During the Cavitation of Additive Manufactured Commercially Pure Titanium  

Kim, K.T. (The Corrosion Science Society of Korea)
Chang, H.Y. (The Corrosion Science Society of Korea)
Kim, Y.S. (The Corrosion Science Society of Korea)
Publication Information
Corrosion Science and Technology / v.17, no.6, 2018 , pp. 310-316 More about this Journal
Abstract
The effect of passive film on corrosion of metals and alloys in a static corrosive environment has been studied by many researchers and is well known, however few studies have been conducted on the electrochemical measurement of metals and alloys during cavitation corrosion conditions, and there are no test standards for electrochemical measurements 'During cavitation' conditions. This study used commercially additive manufactured(AM) pure titanium in tests of anodic polarization, corrosion potential measurements, AC impedance measurements, and repassivation. Tests were performed in 3.5% NaCl solution under three conditions, 'No cavitation', 'After cavitation', and 'During cavitation' condition. When cavitation corrosion occurred, the passive current density was greatly increased, the corrosion potential largely lowered, and the passive film revealed a small polarization resistance. The current fluctuation by the passivation and repassivation phenomena was measured first, and this behavior was repeatedly generated at a very high speed. The electrochemical corrosion mechanism that occurred during cavitation corrosion was based on result of the electrochemical properties 'No cavitation', 'After cavitation', and 'During cavitation' conditions.
Keywords
Additive manufactured CP-Ti; Cavitation corrosion; Electrochemical mechanism;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. Thiruvengadam, J.Basic Eng., 85, 365 (1963).   DOI
2 M. S. Plesset, A. T. Ellis, ASME, 77, 1055 (1955).
3 B. Vyas and C. M. Preece, Metall. Trans. A, 8, 915 (1977).   DOI
4 E. H. R. Wade and C. M. Preece, Metall. Trans. A, 9, 1299 (1978).   DOI
5 A. Karimi and J. L. Martin, Int. Metals Rev., 31, 1 (1986).
6 C. Z. Wu, Y. J. Chen, and T. S. Shih, Mater. Charact., 48, 43 (2002).   DOI
7 I. Senocak and W. Shyy, J. Comput. Physics, 176, 363 (2002).   DOI
8 B. Stutz and J. L. Reboud., Phys. Fluids, 9, 3678 (1997).   DOI
9 C. J. Heathcock, B. E. Protheroe, and A. Ball, Wear, 81, 311 (1982).   DOI
10 V. H. Marynin, Mater. Sci., 39, 447 (2003).   DOI
11 A. Krella, Wear, 297, 992 (2013).   DOI
12 V. Belous, V. Vasyliev, A. Luchaninov, V. Marinin, E. Reshetnyak, V. Strel'nitskij, S. Goltvyanytsya, and V. Goltvyanytsya, Surf. Coat. Tech., 223, 68 (2013).   DOI
13 S. Munsterer and K. Kohlhof, Surf. Coat. Tech., 74, 642 (1995).
14 W. Tabakoff, Surf. Coat. Tech., 120, 542 (1999).
15 A. Krella and A. Czyzniewski, Wear, 260, 1324 (2006).   DOI
16 A. Krella and A. Czyzniewski, Wear, 265, 963 (2008).   DOI
17 C. T. Kwoka, F. T. Chenga, and H. C. Manb, Surf. Coat. Tech., 107, 31 (1998).   DOI
18 R. H. Richman, A. S. Rao, and D. E. Hodgson, Wear, 157, 401 (1992).   DOI
19 Y. S. Tian, C. Z. Chen, S. T. Li, and Q. H. Huo, Appl. Surf. Sci., 242, 177 (2005).   DOI
20 ASTM G32-10, Standard Test Method for Cavitation Erosion Using Vibratory Apparatus, ASTM (2010).
21 D. G. Li, J. D. Wang, D. R. Chen, and P. Liang, Ultrasonics Sonochemistry, 29, 279 (2016).   DOI
22 D. G. Li, J. D. Wang, D. R. Chen, and P. Liang, Ultrasonics Sonochemistry, 29, 48 (2016).   DOI
23 ASTM F2792-12a, Standard Terminology for Additive Manufacturing Technologies, ASTM (2015).
24 A. Neville, Wear, 250, 726 (2001).   DOI
25 R. M. Fernandez-Domene, Electrochim. Acta, 58, 264 (2011).   DOI
26 S. J. Kim, Mater. Res. Bull., 58, 244 (2014).   DOI
27 ASTM G32-10, Standard Test Method for Cavitation Erosion Using Vibratory Apparatus (2010).
28 K. T. Kim, J. H. Lee, and Y. S. Kim, Mater., 10, 713 (2017).   DOI
29 J. Z. Lu, H. Qi, K. Y. Luo, M. Luo, and X. N. Cheng, Corros. Sci., 80, 53, (2014).   DOI
30 O. Takakuwa and H. Soyama, Adv. Chem. Eng. Sci., 5, 62, (2015).   DOI
31 R. M. Fernandez-Domene, E. Blasco-Tamarit, D.M. Garcia-Garcia, and J. Garcia-Anton, Corros. Sci., 52, 3453 (2010).   DOI
32 J. Ryl, K. Darowicki, and P. Slepski, Corros. Sci., 53, 1873 (2011).   DOI
33 C. Lin, Q. Zhao, X. Zhao, and Y. Yang, Inter. J. Georesources and Environment, 4, 1 (2018).
34 D. G. Li, Ultrasonics Sonochemistry, 27, 296 (2015).   DOI
35 Milan Brandt, Laser Additive Manufacturing, pp. 351 - 354, ELSEVIER, New york (2016).
36 X. Yong, D. Li, and H. Shen, Mater. Chem. Phys., 139, 290 (2013).   DOI