DOI QR코드

DOI QR Code

Hygroscopicity of 1:2 Choline Chloride:Ethylene Glycol Deep Eutectic Solvent: A Hindrance to its Electroplating Industry Adoption

  • Brusas, John Raymund (Sustainable Electrochemical Technologies Laboratory, Department of Mining, Metallurgical and Materials Engineering, College of Engineering, University of the Philippines Diliman) ;
  • Dela Pena, Eden May B. (Sustainable Electrochemical Technologies Laboratory, Department of Mining, Metallurgical and Materials Engineering, College of Engineering, University of the Philippines Diliman)
  • Received : 2020.10.05
  • Accepted : 2021.03.10
  • Published : 2021.11.28

Abstract

Deep eutectic solvents have been established as feasible metal electroplating solvent alternatives over traditional toxic aqueous plating baths. However, water, either added intentionally or unintentionally, can significantly influence the solvent's physical properties and performance, thereby hindering its industry application. In this study, the hygroscopicity, or the ability to absorb moisture from the environment, of synthesized ethaline (1:2 choline chloride:ethylene glycol) was investigated. The kinematic viscosity, electrical conductivity, electrochemical window, and water content of ethaline were monitored over a 2-week period. Karl Fischer titration tests showed that ethaline exposed to the atmosphere displayed significant hygroscopicity compared to its unexposed counterpart. 1H NMR spectroscopy revealed that water vapor was readily absorbed at the surface due to the hydrophilic groups present in the ethaline molecule. Water uptake resulted in the decrease in viscosity, increase in electrical conductivity and narrowing of the electrochemical window of ethaline. Solution heating at 100℃ removed the absorbed moisture and allowed the recovery of the solvent's initial properties.

Keywords

Acknowledgement

The authors would like to acknowledge the Philippine Council for Industry, Energy, and Emerging Technology Research and Development (PCIEERD) of the Department of Science and Technology (DOST) funded project entitled "Establishing an Environment- electrodeposition from Ionic Liquids 1Friendly Chromium Plating Process using New Generation Ionic liquids" and the Science Education Institute - DOST.

References

  1. A. Abbott, F. Endres and D. R. Macfarlane, Electrodeposition from Ionic Liquids, 2017.
  2. A.P. Abbott, and K.J. McKenzie, Phys. Chem. Chem. Phys., 2006, 8(37), 4265-4279. https://doi.org/10.1039/b607329h
  3. S. Mishra, and R. N. Bharagava, J. Environ. Sci. Heal. Part C, 2016, 34(1), 1-32. https://doi.org/10.1080/10590501.2015.1096883
  4. A. P. Abbott, K. S. Ryder, and U. Konig, Trans. IMF, 2008, 86(4), 196-204. https://doi.org/10.1179/174591908x327590
  5. E. L. Smith, A. P. Abbott, and K. S. Ryder, Chem. Rev., 2014, 114(21), 11060-11082. https://doi.org/10.1021/cr300162p
  6. L. I. N. Tome, V. Baiao, W. da Silva, and C. M. A. Brett, Appl. Mater. Today, 2018, 10, 30-50. https://doi.org/10.1016/j.apmt.2017.11.005
  7. J. Zhang, C. Gu, Y. Tong, J. Gou, X. Wang, and J. Tu, RSC Adv., 2015, 5(87), 71268-71277. https://doi.org/10.1039/C5RA13056E
  8. L. S. Bobrova, F. I. Danilov, and V. S. Protsenko, J. Mol. Liq., 2016, 223, 48-53. https://doi.org/10.1016/j.molliq.2016.08.027
  9. V. S. Protsenko, L. S. Bobrova, A. S. Baskevich, S. A. Korniy, and F. I. Danilov, J. Chem. Technol. Metall., 2018, 53(5), 906-915.
  10. A. P. Abbott, K. El Ttaib, K. S. Ryder, and E. L. Smith, Trans. IMF, 2008, 86(4), 234-240. https://doi.org/10.1179/174591908X327581
  11. E. A. Mernissi Cherigui, K. Sentosun, P. Bouckenooge, H. Vanrompay, S. Bals, H. Terryn, and J. Ustarroz, J. Phys. Chem. C, 2017, 121(17), 9337-9347. https://doi.org/10.1021/acs.jpcc.7b01104
  12. A. A. Kityk, D. A. Shaiderov, E. A. Vasil'eva, V. S. Protsenko, and F. I. Danilov, Electrochim. Acta, 2017, 245, 133-145. https://doi.org/10.1016/j.electacta.2017.05.144
  13. A. P. Abbott, A. Ballantyne, R. C. Harris, J. A. Juma, and K. S. Ryder, Electrochim. Acta, 2015, 176, 718-726. https://doi.org/10.1016/j.electacta.2015.07.051
  14. A. P. Abbott, A. Ballantyne, R. C. Harris, J. A. Juma, and K. S. Ryder, Phys. Chem. Chem. Phys., 2017, 19(4), 3219-3231. https://doi.org/10.1039/c6cp08720e
  15. N. M. Pereira, C. M. Pereira, J. P. Araujo, and A. Fernando Silva, J. Electroanal. Chem., 2017, 801, 545-551. https://doi.org/10.1016/j.jelechem.2017.08.019
  16. S. Salome, N. M. Pereira, E. S. Ferreira, C. M. Pereira, and A. F. Silva, J. Electroanal. Chem., 2013, 703, 80-87. https://doi.org/10.1016/j.jelechem.2013.05.007
  17. P. Sebastian, E. Valles, and E. Gomez, Electrochim. Acta, 2014, 123, 285-295. https://doi.org/10.1016/j.electacta.2014.01.062
  18. P. Sebastian, E. Valles, and E. Gomez, Electrochim. Acta, 2013, 112, 149-158. https://doi.org/10.1016/j.electacta.2013.08.144
  19. F. Zhao, S. Franz, A. Vicenzo, M. Bestetti, F. Venturini, and P. L. Cavallotti, Electrochim. Acta, 2013, 114, 878-888. https://doi.org/10.1016/j.electacta.2013.07.172
  20. G. Vargas, J. Lopez, A. P. Garcia, and J. Cerda, ISES Conf. Proc., 2016.
  21. A. Abdullah and A. Barzinjy, ZANCO J. Pure Appl. Sci., 2016, 28(2), 47-55.
  22. G. Saravanan and S. Mohan, Int. J. Electrochem. Sci., 2011, 6, 1468-1478.
  23. E.L. Smith, J.C. Barron, A.P. Abbott, and K.S. Ryder, Anal. Chem., 2009, 81(20), 8466-8471. https://doi.org/10.1021/ac901329e
  24. F. Endres, S. Zein, and E. Abedin, Phys. Chem. Chem. Phys., 2006, 8(18), 2101-2116. https://doi.org/10.1039/b600519p
  25. F. Liu, Y. Deng, X. Han, W. Hu, and C. Zhong, J. Alloys Compd., 2016, 654, 163-170. https://doi.org/10.1016/j.jallcom.2015.09.137
  26. Y. Chen, D. Yu, W. Chen, L. Fu, and T. Mu, Phys. Chem. Chem. Phys., 2019, 21(5), 2601-2610. https://doi.org/10.1039/C8CP07383J
  27. Q. Li, J. Jiang, G. Li, W. Zhao, X. Zhao, and T. Mu, Sci. China Chem., 2016, 59(5), 571-577. https://doi.org/10.1007/s11426-016-5566-3
  28. Y. Cao, Y. Chen, X. Sum, Z. Zhang, and T. Mu, Phys. Chem. Chem. Phys., 2012, 14(35), 12252-12262. https://doi.org/10.1039/c2cp41798g
  29. Y. Koga, P. Westh, K. Nishikawa, and S. Subramanian, J. Phys. Chem. B, 2011, 115(12), 2995-3002. https://doi.org/10.1021/jp108347b
  30. C. Du, B. Zhao, X. Chen, N. Birbilis, and H. Yang, Sci. Rep., 2016, 6(1), 1-14 https://doi.org/10.1038/s41598-016-0001-8
  31. O. S. Hammond, D. T. Bowron, and K. J. Edler, Angew. Chem. Int. Ed., 2017, 56(33), 9782-9785. https://doi.org/10.1002/anie.201702486
  32. V.S. Protsenko, L.S. Bobrova, A.S. Baskevich, S.A. Korniy, F.I. Danilov, J. Chem. Technol. Metall., 2018, 53(5), 906-915.
  33. D.C. McCalman, L. Sun, Y. Zhang, J.F. Brennecke, E.J. Maginn, W.F. Schneider, J. Phys. Chem. B, 2015, 119(19), 6018-6023. https://doi.org/10.1021/acs.jpcb.5b01986
  34. L. Cammarata, S. G. Kazarian, P. A. Salter, and T. Welton, Phys. Chem. Chem. Phys., 2001, 3(23), 5192- 5200. https://doi.org/10.1039/b106900d
  35. A.M.M. Sousa, H.K.S. Souza, L. Nicholas, C-K Liu, M.P. Goncalves, and LS Liu, Carbohydr. Polym., 2014, 111, 206-214. https://doi.org/10.1016/j.carbpol.2014.04.019
  36. A. P. Abbott, G. Capper, D. L. Davies, R. K. Rasheed, and V. Tambyrajah, Chem. Commun., 2003, (1), 70-71.
  37. I. Delso, C. Lafuente, J. Munoz-Embid, and M. Artal, J. Mol. Liq., 2019, 290, 111236. https://doi.org/10.1016/j.molliq.2019.111236
  38. C. D. Agostino, R. C. Harris, A. P. Abbott, F. Gladden, and M. D. Mantle, Phys. Chem. Chem. Phys., 2011, 13(48), 21383-21391. https://doi.org/10.1039/c1cp22554e
  39. N. R. Babij, E. O. Mccusker, G. T. Whiteker, B. Canturk, N. Choy, L. C. Creemer, C. V. De Amicis, N. M. Hewlett, P. L. Johnson, J. A. Knobelsdorf, F. Li, B. A. Lorsbach, B. M. Nugent, S. J. Ryan, M. R. Smith, Q. Yang, Org. Process Res. Dev., 2016, 20(3), 661-667. https://doi.org/10.1021/acs.oprd.5b00417
  40. R. J. Abraham, J. J. Byrne, L. Griffiths, and R. Koniotou, Magn. Reson. Chem., 2005, 43, 611-624. https://doi.org/10.1002/mrc.1611
  41. A. P. Abbott, J. C. Barron, K. S. Ryder, and D. Wilson, Chem. A Eur. J., 2007, 13, 6495-6501. https://doi.org/10.1002/chem.200601738
  42. O. S. Hammond, D. T. Bowron, and K. J. Edler, Angew. Chem. Int. Ed., 2017, 129, 9914-9917. https://doi.org/10.1002/ange.201702486
  43. A. Pandey, R. Rai, M. Pal, and S. Pandey, Phys. Chem. Chem. Phys., 2014, 16, 1559-1568. https://doi.org/10.1039/c3cp53456a
  44. G. Garc, S. Aparicio, R. Ullah, and M. Atilhan, Energy Fuels, 2015, 29, 2616-2644. https://doi.org/10.1021/ef5028873
  45. C. D'Agostino, L. F. Gladden, M. D. Mantle, A. P. Abbott, E. I. Ahmed, A. Y. M. Al-Murshedi, and R. C. Harris, Phys. Chem. Chem. Phys., 2015, 17, 21383-21391.
  46. M. Mousavi, A. Dittmer, and B. Wilson, J. Electrochem. Soc., 2015,162(12), A2250-A2258. https://doi.org/10.1149/2.0271512jes
  47. E. Olson, and P. Buhlmann, J. Electrochem. Soc., 2013, 160(2), A320-A323. https://doi.org/10.1149/2.068302jes
  48. D. Yue, Y. Jia, Y. Yao, J. Sun, and Y. Jing, Electrochim. Acta, 2012, 65(30), 30-36. https://doi.org/10.1016/j.electacta.2012.01.003
  49. H. Ohno, Electrochemical Aspects of Ionic Liquids, 2005.
  50. M. Rusdi, Y. Moroi, and H. Nakahara, Langmuir, 2005, 21(16), 7308-7310. https://doi.org/10.1021/la040134g