• 제목/요약/키워드: Electrochemical reduction

검색결과 799건 처리시간 0.026초

Fabrication of Hemoglobin/Silver Nanoparticle Heterolayer for Electrochemical Signal-enhanced Bioelectronic Application

  • Lee, Taek;Yoon, Jinho;Choi, Jeong-Woo
    • Korean Chemical Engineering Research
    • /
    • 제55권4호
    • /
    • pp.556-560
    • /
    • 2017
  • A hemoglobin/silver nanoparticle heterolayer was fabricated for bioelectronic device with electrochemical signal-enhancement effect. As a device element, a hemoglobin, the metalloprotein, contained the heme group that showed the redox property was introduced for charge storage element. For electron transfer facilitation, a silver nanoparticle was introduced for electrochemical signal facilitation, the hemoglobin was immobilized onto Au substrate using chemical linker 6-mercaptohexanoic acid (6-MHA). Then, the silver nanoparticle was immobilized onto fabricated hemoglobin/6-MHA heterolayers by layer-by-layer (LbL) method. The surface morphology and surface roughness of fabricated heterolayer were investigated by atomic force microscopy (AFM). The redox property of hemoglobin/silver nanoparticle heterolayer was investigated by a cyclic voltammetry (CV) experiment for obtaining an oxidation potential and reduction potential. Moreover, for the assessing charge storage function, a chronoamperometry (CA) experiment was conducted to hemoglobin/silver nanoparticle-modified heterolayer electrode using oxidation and reduction potentials, respectively. Based on the results, the fabricated hemoglobin/silver nanoparticle heterolayer showed that an increased charge storage effect compared to hemoglobin monolayer-modified electrode.

사용후핵연료의 전기화학적 금속전환을 위한 5kg $U_3O_8$/Batch 규모의 Mock-up시험 (5kg $U_3O_8$/Batch Scale Mock-up Test for the Electrochemical Reduction of Spent Oxide Fuel)

  • 오승철;허진목;홍순석;이원경;서중석;박성원
    • 한국방사성폐기물학회:학술대회논문집
    • /
    • 한국방사성폐기물학회 2003년도 가을 학술논문집
    • /
    • pp.358-362
    • /
    • 2003
  • 산화물 형태의 사용후핵연료를 용융염에서 금속 형태로 전환하여, 발열량, 부피 및 방사능을 1/4로 감소시킬 수 있는 전기화학적 금속전환 공정을 개발하고, 5kg $U_3O_8$/Batch 규모의 mock-up 실험을 수행하였다. 본 연구에서는 전해 셀의 운전변수를 해석하였으며, 아울러 hot test를 위한 장치개발 연구도 병행하였다. 전기화학적 금속전환 공정을 이용하여 $U_3O_8$ 형태의 천연우라늄 분말을 99% 이상 금속전환할 수 있었으며, 또한 20kg $U_3O_8$/batch 규모 장치의 설계자료를 산출할 수 있었다.

  • PDF

Electrochemical Determination of Artemisinin Using a Multi-wall Carbon Nanotube Film-modified Electrode

  • Yang, Xiaofeng;Gan, Tian;Zheng, Xiaojiang;Zhu, Dazhai;Wu, Kangbing
    • Bulletin of the Korean Chemical Society
    • /
    • 제29권7호
    • /
    • pp.1386-1390
    • /
    • 2008
  • Artemisinin, the effective ingredient of Chinese herb Artemisia annua L (Qinghao in Chinese), has been proved to be effective to antimalarial. Herein, a reliable, sensitive and convenient electrochemical method was developed for the determination of artemisinin utilizing the excellent properties of multi-wall carbon nanotube (MWNT). The electrochemical behavior of artemisinin was investigated. It is found that the reduction peak current of artemisinin remarkably increases and the peak potential shifts positively by 240 mV at the MWNT film-modified electrode. These phenomena indicate that the MWNT film exhibits efficient catalytic activity to the electrochemical reduction of artemisinin. The effects of pH value, amount of MWNT, scan rate and accumulation time were examined. The limit of detection (S/N = 3) is as low as 10 $\mu$ g $L^{-1}$. Finally, this newly developed method was used to determine the content of artemisinin in Artemisia annua L.

Electrochemical Behavior and Square Wave Voltammetric Determination of Doxorubicin Hydrochloride

  • Hahn, Young-Hee;Lee, Ho-Young
    • Archives of Pharmacal Research
    • /
    • 제27권1호
    • /
    • pp.31-34
    • /
    • 2004
  • The electrochemical behavior of doxorubicin hydrochloride was investigated by cyclic voltammetry (CV) and square wave voltammetry (SWV). From CV and SWV studies of doxorubicin hydrochloride in the acetate buffers of various pH values, it was found that protons were involved in the reduction of the antibiotic at the $H^+/e^$- ratio at one ( $\DeltaEp/pH =-53 ∼ -61 mV at 23^{\circ}C$), proposing the electrochemical reduction of the quinone moiety in its anthraquinone aglycone. Its electrochemical behavior was pseudo-reversible in the acetate buffer of pH 3.5 by exhibiting the well-defined single cathodic and anodic waves and the ratio of $lp^a/lp^c$ at approximately one over the scan rates of 10∼100 mV/s. Fast and sensitive SWV showing a single peak of doxorubicin has been applied for its quantitative analysis using an acetate buffer of pH 3.5. A linearity was obtained when the peak currents (lp) were plotted against concentrations of doxorubicin in the range of $5.0\times10^{-7} M∼1.0\times10^{-5}$M with a detection limit of $1.0\times10^{-7}$ M.

파이로프로세싱을 위한 전해환원 공정기술 개발 (Electrochemical Reduction Process for Pyroprocessing)

  • 최은영;홍순석;박우신;임현숙;오승철;원찬연;차주선;허진목
    • Korean Chemical Engineering Research
    • /
    • 제52권3호
    • /
    • pp.279-288
    • /
    • 2014
  • 원자력발전은 국가의 안정적인 에너지 공급원 및 저탄소 발생 에너지원으로써 기능을 해왔으나, 원자력발전에 필수적으로 발생하는 사용후핵연료 축적이라는 큰 숙제를 안고 있다. 이를 해결하기 위한 방법 중의 하나가 파이로프로세싱과 소듐냉각고속로를 연계한 사용후핵연료의 재활용이다. 용융염 전해공정을 이용하는 파이로프로세싱은 사용후핵연료에 존재하는 장 반감기 고독성 원소와 고방열 핵종을 분리하여 고준위 폐기물을 줄이면서도 고속로의 원료물질을 공급하고, 소듐냉각고속로에서는 이를 이용하여 전력을 생산한 후 다시 그 사용후핵연료를 파이로프로세싱에서 원료물질로 가공하는 개념이다. 파이로프로세싱의 전단부에 해당하는 전해환원 공정은 산화물 형태의 사용후핵연료를 금속으로 전환시켜 후속 공정인 전해정련공정에 금속을 공급하는 역할을 한다. 파이로프로세싱을 위한 전해환원 공정의 상용화를 위해서는 고용량, 고효율의 시스템 개발이 요구되므로 양극과 음극에서 공정 속도의 영향을 미치는 인자를 연구하였다.

산화환원반응용 백금 촉매 지지체를 위한 질소 도핑된 단백질계 탄소의 제조 (Synthesis of Nitrogen Doped Protein Based Carbon as Pt Catalysts Supports for Oxygen Reduction Reaction)

  • 이영근;안건형;안효진
    • 한국재료학회지
    • /
    • 제28권3호
    • /
    • pp.182-188
    • /
    • 2018
  • Nitrogen (N)-doped protein-based carbon as platinum (Pt) catalyst supports from tofu for oxygen reduction reactions are synthesized using a carbonization and reduction method. We successfully prepare 5 wt% Pt@N-doped protein-based carbon, 10 wt% Pt@N-doped protein-based carbon, and 20 wt% Pt@N-doped protein-based carbon. The morphology and structure of the samples are characterized by field emission scanning electron microscopy and transmission electron micro scopy, and crystllinities and chemical bonding are identified using X-ray diffraction and X-ray photoelectron spectroscopy. The oxygen reduction reaction are measured using a linear sweep voltammogram and cyclic voltammetry. Among the samples, 10 wt% Pt@N-doped protein-based carbon exhibits exellent electrochemical performance with a high onset potential of 0.62 V, a high $E_{1/2}$ of 0.55 V, and a low ${\Delta}E_{1/2}=0.32mV$. Specifically, as compared to the commercial Pt/C, the 10 wt% Pt@N-doped protein-based carbon had a similar oxygen reduction reaction perfomance and improved electrochemical stability.

Lithium Insertion Behavior of Nanoscopic Co3O4 Prepared with Avian Egg Membrane as a Template

  • Christy, Maria;Jisha, M.R;Kim, Ae-Rhan;Nahm, Kee-Suk;Yoo, Dong-Jin;Suh, E.K.;Kumari, T. Sri Devi;Kumar, T. Prem;Stephan, A. Manuel
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권4호
    • /
    • pp.1204-1208
    • /
    • 2011
  • Nanoscopic $Co_3O_4$ particles were prepared using avian egg membrane as a template at $800^{\circ}C$. The prepared materials were subjected to XRD, SEM, TEM and Raman spectroscopic studies. Cyclic voltammetry study shows a single step oxidation and reduction process. Electrochemical lithium insertion behavior of the materials was examined in coin cells of the 2032 configuration. The material showed a discharge capacity 600mAh/g even after 20 cycles.

Consideration on the Non-linearity of Warburg Impedance for Fourier Transform Electrochemical Impedance Spectroscopy

  • Chang, Byoung-Yong
    • 전기화학회지
    • /
    • 제17권2호
    • /
    • pp.119-123
    • /
    • 2014
  • Here I report on how Fourier Transform Electrochemical Impedance Spectroscopy (FTEIS) overcomes the potential-current linearity problem encountered in the impedance calculation process. FTEIS was first invented to solve the time-related drawback of the conventional impedance technique. The dramatic time reduction of FTEIS enabled the real-time impedance measurement but brought about the linearity problem at the same time. While the conventional method circumvents the problem using the steady-state made by a sufficiently long measurement time, FTEIS cannot because of its real-time function. However, according to the mathematical development reported in this article, the potential step used in FTEIS is proved to avoid the linearity problem. During the step period, the potential and the current are linearized by the electrochemical impedance. Also, Fourier transform of the differentiated potential and current is proved to give the same result of the original ones.

Electrochemical behaviors of Indium

  • Chung, Yong-Hwa;Lee, Chi-Woo
    • Journal of Electrochemical Science and Technology
    • /
    • 제3권1호
    • /
    • pp.1-13
    • /
    • 2012
  • Many researchers focus on indium contained semiconductors and alloy compounds for their various applications. Electrochemists want to obtain indium contained compounds simply via one-step electrodeposition. First of all, electrochemistry of constituent elements must be understood in order to develop the best condition for the electrodeposition of indium contained compounds. We will review the electrochemistry of indium. Equilibria between indium metal and indium ions and the standard electrode potentials of the equilibria will be reviewed. The electrochemical reactions of indium species are affected by surrounding conditions. Thus dependences of electrochemical behaviors of indium metal and indium ions on various parameters will be reviewed.

Electrochemical Oxidations of Alcohols on Platinum/Carbon Nanotube Composites

  • Kim, Jungsoo;Nam, Dae-Geun;Oh, Weontae
    • Transactions on Electrical and Electronic Materials
    • /
    • 제14권3호
    • /
    • pp.125-129
    • /
    • 2013
  • Composites of platinum and multiwalled carbon nanotubes (MWNTs) were prepared in various reduction conditions and characterized using cyclic voltammetry. The MWNTs were functionalized with carboxylic acid and/or hydroxyl groups in acidic solutions prior to the formation of MWNT-Pt composites. Platinum nanoparticles were deposited onto the chemically-oxidized MWNTs in 1-propanol and 1,3-propanediol. The reduction of Pt precursors in other solutions could induce differences in their morphologies in composite thin films. The morphologies of MWNTs with Pt deposited were dependent on the reduction solutions, and the electrocatalytic activities on alcohols changed accordingly. The electrochemical activities of the as-prepared MWNT-Pt thin films on common alcohols such as methanol and ethanol were investigated.