• 제목/요약/키워드: Electrochemical properly

검색결과 23건 처리시간 0.024초

A New Algorithm Design for the Real-time Electrochemical Impedance Monitoring System

  • Chang, Byoung-Yong
    • Journal of Electrochemical Science and Technology
    • /
    • 제3권4호
    • /
    • pp.154-158
    • /
    • 2012
  • It is generally known that electrochemical impedance spectroscopy is a powerful technique and its real-time application has been demanded for prompt observations on instantaneous electrochemical changes. Nevertheless, long measurement time and laborious analysis procedures have hindered development of it. Solving the problems, here I report of a new algorithm design for development of a real-time electrochemical impedance monitoring system, which potentially provides a guideline in developing monitoring systems of electric vehicles batteries and other electrochemical power plants. The significant progress in this report is employment of the parallel processing protocol which connects independent sub functions to successfully operate with avoiding mutual interruptions. Therefore, all the processes required to monitor electrochemical impedance changes in realtime are properly operated. To realize the conceptual scheme, a Labview program was coded with sub functions units which conduct their processes individually and only data are transferred between them through the parallel pipelines. Finally, measured impedance spectra and analysis results are displayed, which are synchronized according to the time of change.

Evaluation of High Order Statistical Parameter for Electrochemical Noise Analysis

  • Kim, Jong Jip
    • Corrosion Science and Technology
    • /
    • 제7권5호
    • /
    • pp.296-299
    • /
    • 2008
  • High order statistical parameters were evaluated using the electrochemical noise data collected during corrosion of type 430 stainless steel coupled to a inert, platinum electrode in 3.5% NaCl solution. High order statistical parameters are shown to predict uniform corrosion properly. However, Localization index, skewness of current, kurtosis and skewness of potential are capable of predicting pitting corrosion only when the transients are large with long life time. Of the high order statistical parameters evaluated, kurtosis of current is found to be the most sensitive parameter for detecting uniform and pitting corrosion.

Impedance Characteristics of Oxide Layers on Aluminium

  • 오한준;장경욱;치충수
    • Bulletin of the Korean Chemical Society
    • /
    • 제20권11호
    • /
    • pp.1340-1344
    • /
    • 1999
  • The electrochemical behavior of oxide layers on aluminium was studied using electrochemical impedance spectroscopy. Impedance spectra were taken at a compact and a porous oxide layer of Al. The anodic films on Al have a variable stoichiometry with gradual reduction of oxygen deficiency towards the oxide-electrolyte interface. Thus, the interpretation of impedance spectra for oxide layers is complicated, with the impedance of surface layers differing from those of ideal capacitors. This layer behavior with conductance gradients was caused by an inhomogeneous dielectric. The frequency response cannot be described by a single RC element. The oxide layers of Al are properly described by the Young model of dielectric constant with a vertical decay of conductivity.

Effect of LiCoO2 Cathode Density and Thickness on Electrochemical Performance of Lithium-Ion Batteries

  • Choi, Jaecheol;Son, Bongki;Ryou, Myung-Hyun;Kim, Sang Hern;Ko, Jang Myoun;Lee, Yong Min
    • Journal of Electrochemical Science and Technology
    • /
    • 제4권1호
    • /
    • pp.27-33
    • /
    • 2013
  • The consequences of electrode density and thickness for electrochemical performance of lithium-ion cells are investigated using 2032-type coin half cells. While the cathode composition is maintained by 90:5:5 (wt.%) with $LiCoO_2$ active material, Super-P electric conductor and polyvinylidene fluoride polymeric binder, its density and thickness are independently controlled to 20, 35, 50 um and 1.5, 2.0, 2.5, 3.0, 3.5 g $cm^{-3}$, respectively, which are based on commercial lithium-ion battery cathode system. As the cathode thickness is increased in all densities, the rate capability and cycle life of lithium-ion cells become significantly worse. On the other hand, even though the cathode density shows similar behavior, its effect is not as high as the thickness in our experimental range. This trend is also investigated by cross-sectional morphology, porosity and electric conductivity of cathodes with different densities and thicknesses. This work suggests that the electrode density and thickness should be chosen properly and mentioned in detail in any kinds of research works.

인발가공된 스테인리스강선의 표면특성에 미치는 Ni코팅의 영향 (Effects of Ni Coating on the Surface Characteristics of Drawed Stainless Steel Wire)

  • 최한철
    • 한국표면공학회지
    • /
    • 제36권5호
    • /
    • pp.398-405
    • /
    • 2003
  • The stainless steel wire requires good corrosion resistance and mechanical properties, such as drawing ability, combined with a high resistance to corrosion. For increasing drawing ability of stainless steel, Ni coating methods have been used in this study. However, there is no information on the electrochemical corrosion behavior of drawed wires after Ni coating. To investigate corrosion resistance and mechanical property of drawed wire, the characteristics of Ni coated wires have been determined by tensile strength tester, hardness tester, field emission scanning microscope, energy dispersive x-ray analysis and potentiodynamic method in 0.1 M HCl. The drawed stainless steel wires showed the strain-induced martensitic structure, whereas non-drawed stainless steel wire showed annealing twin in the matrix of austenitic structure. The hardness and tensile strength of drawed stainless steel wire were higer than that of non-drawed stainless steel wire. Electrochemical measurements showed that, in the case of drawed stainless steel o ire after Ni coating, the corrosion resistance and pitting potential increased compared with non-coated and drawed stainless steel wire due to decrease in the surface roughness.

레이저빔 마킹 조건에 따른 티타늄 표면특성 분석 (Analysis of Titanium Surface Characteristics according to Laser Beam Marking Conditions)

  • 신홍식
    • 융복합기술연구소 논문집
    • /
    • 제3권2호
    • /
    • pp.39-43
    • /
    • 2013
  • Titanium has been used to satisfy various applications such as bio engineering, aerospace, electronics, automobile. Recently, micro fabrication technologies of metals such as titanium have been required to satisfy many conditions in various fields. To satisfy these demands, micro electrochemical process using laser marking can be an alternative method because it is one of the precision machining and efficient process. Micro electrochemical process using laser marking needs to accomplish form of the oxidized recast layer on metal surface by laser marking. The laser beam marking conditions such as average power, pulse repetition rate and marking speed should be properly selected to form oxidized recast layer. So, the characteristics of titanium surface according to laser marking conditions was investigated through SEM(scanning electron microscope), EDS(energy dispersive spectrometer) and surface roughness analysis.

  • PDF

탄소계 복합담지체에 담지된 고내구성 고분자전해질 연료전지용 백금촉매 (Highly Durable Pt catalyst Supported on the Hybrid Carbon Materials for Polymer Electrolyte Membrane Fuel Cell)

  • 박향진;허승현
    • 전기화학회지
    • /
    • 제17권3호
    • /
    • pp.201-208
    • /
    • 2014
  • 본 연구에서는 산화그래핀과 카본블랙의 혼합담체를 이용하여 내구성이 향상된 백금촉매를 폴리올법으로 제조하였다. 삼전극 순환전압전류법을 이용한 전기화학성능 측정결과 적절한 비율로 조절된 혼합담지체에 백금을 담지시켰을 경우 초기 성능 감소없이 장기내구성이 향상되는 것으로 나타났다. 또한 회전원판전극을 이용하여 산소환원반응을 수행한 결과 혼합담체에 담지된 백금촉매가 카본블랙 단일담체에 담지된 백금촉매보다 우수한 고유활성값을 나타내었다.

SPCE에 HRP 효소가 고정화된 바이오센서의 전기화학적 특성에 관한 연구 (A Study on the Electrochemical Characteristics of Biosensor with HRP Enzyme Immobilized on SPCE)

  • 한경호;이대현;윤도영;최상일
    • 전기화학회지
    • /
    • 제23권3호
    • /
    • pp.73-80
    • /
    • 2020
  • 과산화수소를 이용한 펜톤(Fenton)산화법은 수처리 및 토양 복원분야에서 활용되는 친환경 산화방법이다. 이 방법으로 오염물질을 제거할 때, 오염물의 농도에 따라 과산화수소의 농도를 적절하게 조절하는 것이 상당히 중요하다. 이에 본 연구에서는 HRP (horseradish peroxidase) 효소를 이용한 전기화학적 바이오센서를 제조하고 효소의 활성과 과산화수소의 검출 특성에 대한 연구를 수행하였다. SPCE (Screen Printed Carbon Electrode)의 작업 전극 표면에 키토산과 AuNP를 이용하여 HRP를 전착하였다. 이 후, 전위주사법(CV)과 전기화학적 임피던스 분광법(EIS)을 이용하여 효소의 고정화를 확인하였다. 또한 시간대전류법(CA)과 UV 분광법으로부터 HRP 효소의 활성을 확인하였다. 본 연구에서 제조한 바이오센서를 PBS 전해질에 담그고 과산화수소를 적정하여 CA 분석으로부터 전극에서 발생하는 전류를 측정하였다. 발생 전류는 과산화수소의 농도에 대하여 선형적으로 증가하였으며, 전류로부터 과산화수소의 농도를 예측할 수 있는 검정곡선을 도출하였다.

Electrochemical Properties of 0.3Li2MnO3·0.7LiMn0.55Ni0.30Co0.15O2 Electrode Containing VGCF for Lithium Ion Battery

  • Kim, Jeong-Min;Jeong, Minchan;Jin, Bong-Soo;Kim, Hyun-Soo
    • Journal of Electrochemical Science and Technology
    • /
    • 제5권1호
    • /
    • pp.32-36
    • /
    • 2014
  • The $0.3Li_2MnO_3{\cdot}0.7LiMn_{0.55}Ni_{0.30}Co_{0.15}O_2$ cathode material was prepared via a co-precipitation method. The vapor grown carbon fiber (VGCF) was used as a conductive material and its effects on electrochemical properties of the $0.3Li_2MnO_3{\cdot}0.7LiMn_{0.55}Ni_{0.30}Co_{0.15}O_2$ cathode material were investigated. From the XRD pattern, the typical complex layered structure was confirmed and a solid solution between $Li_2MnO_3$ and $LiMO_2$ (M = Ni, Co and Mn) was formed without any secondary phases. The VGCF was properly distributed between cathode materials and conductive sources by a FE-SEM. In voltage profiles, the electrode with VGCF showed higher discharge capacity than the pristine electrode. At a 5C rate, 146 mAh/g was obtained compared with 232 mAh/g at initial discharge in the electrode with VGCF. Furthermore, the impedance of the electrode with VGCF did not changed much around $9-10{\Omega}$ while the pristine electrode increased from 21.5${\Omega}$ to $46.3{\Omega}$ after the $30^{th}$ charge/discharge cycling.

Co3(PO4)2로 표면코팅한 Li[Co0.1Ni0.15Li0.2Mn0.55]O2의 리튬 2차전지용 양극재 특성 (Cathode Characteristics of Co3(PO4)2-Coated [Co0.1Ni0.15Li0.2Mn0.55]O2 for Lithium Rechargeable Batteries)

  • 이상효;김광만;구본급
    • 한국세라믹학회지
    • /
    • 제45권2호
    • /
    • pp.112-118
    • /
    • 2008
  • To prepare the high-capacity cathode material with improved electrochemical performances, nanoparticles of $C0_3(PO_4)_2$ were coated on the powder surface of $Li[Co_{0.1}Ni_{0.15}Li_{0.2}Mn_{0.55}]O_2$, which was already synthesized by simple combustion method. The coated powders after the heat treatment at >$700^{\circ}C$ surely showed well-structured crystalline property with nanoscale surface coating layer, which was consisted of $LiCOPO_4$ phase formed from the reaction bwtween $CO_3(PO_4)_2$ and lithium impurities. In addition, cycle performance was particularly improved by the $CO_3(PO_4)_2$-coating for the cathode material for lithium rechargeable batteries.