Browse > Article
http://dx.doi.org/10.5229/JECST.2012.3.4.154

A New Algorithm Design for the Real-time Electrochemical Impedance Monitoring System  

Chang, Byoung-Yong (Department of Chemistry, Pukyong National University)
Publication Information
Journal of Electrochemical Science and Technology / v.3, no.4, 2012 , pp. 154-158 More about this Journal
Abstract
It is generally known that electrochemical impedance spectroscopy is a powerful technique and its real-time application has been demanded for prompt observations on instantaneous electrochemical changes. Nevertheless, long measurement time and laborious analysis procedures have hindered development of it. Solving the problems, here I report of a new algorithm design for development of a real-time electrochemical impedance monitoring system, which potentially provides a guideline in developing monitoring systems of electric vehicles batteries and other electrochemical power plants. The significant progress in this report is employment of the parallel processing protocol which connects independent sub functions to successfully operate with avoiding mutual interruptions. Therefore, all the processes required to monitor electrochemical impedance changes in realtime are properly operated. To realize the conceptual scheme, a Labview program was coded with sub functions units which conduct their processes individually and only data are transferred between them through the parallel pipelines. Finally, measured impedance spectra and analysis results are displayed, which are synchronized according to the time of change.
Keywords
Impedance spectroscopy; Electrochemical instrument; Real-time measurement;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 B.-Y. Chang and S.-M. Park, Annu. Rev. Anal. Chem. 3, 207-229 (2010).   DOI   ScienceOn
2 D. A. Skoog, F. J. Holler and T. A. Nieman, Principles of Instrumental Analysis. 5ed. Harcour Brace & Company, Orlando (1998).
3 A. J. Bard and L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications. Wiley, New York (2002).
4 E. Barsoukov and J. R. Macdonald, Impedance spectroscopy: theory, experiment, and applications. 2ed. Wiley-Interscience, (2005).
5 M. Choi, K. Jo and H. Yang, J. Electrochem. Sci. Tech. 3, 24-28 (2012).   DOI   ScienceOn
6 J. H. Nam, C. H. Woo, K. M. Kim, K. S. Ryu and J. M. Ko, J. Electrochem. Sci. Tech. 3, 80-84 (2012).   DOI   ScienceOn
7 D. E. Smith, Anal. Chem. 35, 610-614 (1963).   DOI
8 B. Y. Chang, E. Ahn and S. M. Park, J. Phys. Chem. C 112, 16902-16909 (2008).   DOI   ScienceOn
9 A. Lasia, Electrochemical Impedance Spectroscopy and its applications. In Modern Aspects of Electrochemistry, White, R. E.; Conway, B. E.; Bockris, J. O. M., Eds. Plenum Press: New York, Vol. 32 (1999).
10 M. Sluyters-Rehbach and J. H. Sluyters, J. Electroanal. Chem. 102, 415-419 (1979).   DOI   ScienceOn
11 Z. B. Stoynov, Electrochim. Acta 37, 2357-2359 (1992).   DOI   ScienceOn
12 G. S. Popkirov and R. N. Schindler, Electrochim. Acta 38, 861-867 (1993).   DOI   ScienceOn
13 B.-Y. Chang and S.-M. Park, Anal. Chem. 79, 4892-4899 (2007).   DOI   ScienceOn
14 B.-Y. Chang, H. J. Lee and S.-M. Park, Electroanalysis 23, 2070-2078 (2011).   DOI   ScienceOn
15 S. Rodrigues, N. Munichandraiah and A. K. Shukla, J. Power Sources 87, 12-20 (2000).   DOI   ScienceOn
16 S. Andreasen, J. Jespersen, E. Schaltz and S. Kaer, Fuel Cells 9, 463-473 (2009).   DOI   ScienceOn
17 K. C. Hess, W. K. Epting and S. Litster, Anal. Chem. 83, 9492-9498 (2011).   DOI   ScienceOn