• Title/Summary/Keyword: Electrochemical etching process

Search Result 84, Processing Time 0.032 seconds

Enhanced Activity for Oxygen Evolution Reaction of Nanoporous IrNi thin film Formed by Electrochemical Selective Etching Process

  • Park, Shin-Ae;Shim, Kyubin;Kim, Kyu-Su;Moon, Young Hoon;Kim, Yong-Tae
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.4
    • /
    • pp.402-407
    • /
    • 2019
  • Water electrolysis is known as the most sustainable and clean technology to produce hydrogen gas, however, a serious drawback to commercialize this technology is due to the slow kinetics in oxygen evolution reaction (OER). Thus, we report on the nanoporous IrNi thin film that reveals a markedly enhanced OER activity, which is attained through a selective etching of Os from the IrNiOs alloy thin film. Interestingly, electrochemical selective etching of Os leads to the formation of 3-dimensionally interconnected nanoporous structure providing a high electrochemical surface area (ECSA, 80.8 ㎠), which is 90 fold higher than a bulk Ir surface (0.9 ㎠). The overpotential at the nanoporous IrNi electrode is markedly lowered to be 289 mV at 10 mA cm-2, compared with bulk Ir (375 mV at 10 mA cm-2). The nanoporous IrNi prepared through the selective de-alloying of Os is promising as the anode material for a water electrolyzer.

A Study on the Control of the Length of Carbon-Nano-Tube Probe (탄소나노튜브 프로브의 길이 제어에 관한 연구)

  • Lee, Jun-Sok;Kwak, Yoon-Keun;Kim, Soo-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1888-1891
    • /
    • 2003
  • In this paper, we proposed a new method to control the length of carbon nano tube in the single CNT probe. A single CNT probe was composed of a tungsten tip made by the electrochemical etching and carbon nano tube which was grown by CVD and prepared through the sonication. The two components were attached with the carbon tape. Since the length of CNT can not be controlled during the manufacturing, the post process is needed to shorten the CNT. In this paper, we proposed the method of electrochemical process. The process was done under the optical microscope and the results were checked by SEM. The diameter of the carbon nano tube used in this paper was about 130nm because the above process had to be done with the optical microscope. Using the method proposed in this paper, we can control the length of the nano tube tip.

  • PDF

Micromachining Using Laser Beam Machining and Electrochemical Etching (레이저 빔 가공과 전해 에칭을 이용한 미세 가공)

  • Kim, Jang-Woo;Kwon, Min-Ho;Chung, Do-Kwan;Chu, Chong-Nam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.10
    • /
    • pp.1089-1095
    • /
    • 2012
  • Laser beam machining (LBM) using nanosecond pulsed laser is widely known to be rapid and non-wear process for micromachining. However, the quality itself cannot meet the precision standard due to the recast layer and heat affected zone. In this paper, a fabrication method for machining micro features in stainless steel using a hybrid process of LBM using nanosecond pulsed laser and electrochemical etching (ECE) is reported. ECE uses non-contacting method for precise surface machining and selectively removes the recast layer and heat affected zone produced by laser beam in an effective way. Compared to the single LBM process, the hybrid process of LBM and ECE enhanced the quality of the micro features.

Homeogenous Etched Pits on the Surface of Nb by Electrochemical Micromachining (전기화학적 마이크로머시닝 기술을 이용한 균일한 니오븀 표면 에칭 연구)

  • Kim, Kyungmin;Yoo, Hyeonseok;Park, Jiyoung;Shin, Sowoon;Choi, Jinsub
    • Applied Chemistry for Engineering
    • /
    • v.25 no.1
    • /
    • pp.53-57
    • /
    • 2014
  • We describe the preparation of highly-ordered etching pits on the Nb foil through a micromachining. The effects of electrochemical polishing on the formation of uniformly-patterned protective epoxy layer was investigated. Unlike the previous process using $O_2$ plasma, well-ordered etched pits were prepared without any dry processes. As a result, the Nb foil with the well-ordered pits of $10{\mu}m{\times}5{\mu}m$ could be obtained by electrochemical etching in methanolic electrolytes for 10 min.

Three-Dimensional Microstructures Fabricated by Multi-Step Electrochemical Aluminum-Foil Etching (알루미늄 박판의 다단 전해식각 공정을 이용한 3 차원 마이크로 구조물의 제작)

  • Kim, Yoon-Ji;Youn, Se-Chan;Han, Won;Cho, Young-Ho;Park, Ho-Joon;Chang, Byeung-Gyu;Oh, Yong-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.12
    • /
    • pp.1805-1810
    • /
    • 2010
  • We present a simple, cost-effective, and fast fabrication process for three-dimensional (3D) microstructures; this process is based on multi-step electrochemical etching of metal foils which facilitates the mass production of 3D microstructures. Compared to electroplating, this process maintains uniform and well-controlled material properties of the microstructure. In the experimental study, we perform single-step electrochemical etching of aluminum foils for the fabrication of 2D cantilever arrays. In the single-step etching, the depth etch rate and bias etch rate are measured as $1.50{\pm}0.10 {\mu}m/min$ and $0.77{\pm}0.03 {\mu}m/min$, respectively. Using the results of single-step etching, we perform two-step electrochemical etching for 3D microstructures with probe tips on cantilevers. The errors in height and lateral fabrication in the case of the fabricated structures are $15.5{\pm}5.8% $ and $3.3{\pm}0.9%$, respectively; the surface roughness is $37.4{\pm}9.6nm$.

Fabrication of Porous Silicon Using Electrochemical Etching (전기화학적 식각을 이용한 다공성 실리콘 제조)

  • Jin, Dong-Woo;No, Sang-Soo;Kim, Gue-Hyun;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.04b
    • /
    • pp.121-124
    • /
    • 2004
  • The research on the porous silicon having low wafer stress during the oxidation process in IPOS(Isolation by Porous Oxidized Silicon) were carried out. Fine pores with less than 100A of diameter were found in the porous silicon which from p-type Si by electrochemical etching. In this study, it is possible to make the porous silicon with 59% of porosity.

  • PDF

Arbitrary Cutting of a single CNT tip in Nanogripper using Electrochemical Etching

  • Lee Junsok;Kwak Yoonkeun;Kim Soohyun
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.6 no.2
    • /
    • pp.46-49
    • /
    • 2005
  • Recently, many research results have been reported about nano-tip using carbon nanotube because of its better sensing ability compared to a conventional silicon tip. However, it is very difficult to identify the carbon nanotube having proper length for nano-tip and to attach it on a conventional tip. In this paper, a new method is proposed to make a nano-tip and to control its length. The electrochemical etching method was used to control the length by cutting the carbon nanotube of arbitrary length and it was possible to monitor the process through current measurement. The etched volume of carbon nanotube was determined by the amount of applied charge. The carbon nanotube was successfully cut and could be used in the nanogripper.

Electrochemical Etching of Silicon in Porous Silicon Layer Transfer Process for Thin Film Solar Cell Fabrication (초박형 태양전지의 Porous Si Layer Transfer 기술 적용을 위한 전기화학적 실리콘 에칭)

  • Lee, Ju-Young;Han, Wone-Keun;Lee, Jae-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.16 no.4
    • /
    • pp.55-60
    • /
    • 2009
  • Porous silicon film is fabricated by electrochemical etching in a chemical mixture of HF and ethanol. Effects of Si type, Si resistivity, ultrasonic frequency, current density and etching time on surface morphology of PS film were studied. Electrochemical etching in ultrasonic bath promotes the uniformity of porous layer of Si. Frequency of ultrasonic was increased from 40 kHz to 130 kHz to obtain uniform pores on the Si surface. When current density was higher, the sizes of pores were larger. The new etching cell using back contact metal and current shield help to overcome nonhomogeneity and current crowding effect, and then leads to fabricate uniform pores on the Si surface. The distribution of pore size shows no notable tendency with etching time.

  • PDF

The research of porous Si for crystalline silicon solar cells (다공성 실리콘을 적용한 결정질 실리콘 태양전지에 관한 연구)

  • Lee, Jae-Doo;Kim, Min-Jeong;Lee, Soo-Hong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.235-235
    • /
    • 2010
  • The Anti-reflection coating(ARC) properties can be formed on silicon substrate using a simple electrochemical etching technique. This etching step can be improve solar cell efficiency for a solar cell manufacturing process. This paper is based on the removal of silicon atoms from the surface a layer of porous silicon(PSi). Porous silicon is form by anodization and can be obtained in an electrolyte with hydrofluoric. It have demonstrated the feasibility of a very efficient porous Si layer, prepared by a simple, cost effective, electrochemical etching method. We expect our research can results approaching to lower than 10% of reflectance by optimization of process parametaer.

  • PDF

Fabrication of Ordered One-Dimensional Silicon Structures and Radial p-n Junction Solar Cell

  • Kim, Jae-Hyun;Baek, Seong-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.86-86
    • /
    • 2012
  • The new approaches for silicon solar cell of new concept have been actively conducted. Especially, solar cells with wire array structured radial p-n junctions has attracted considerable attention due to the unique advantages of orthogonalizing the direction of light absorption and charge separation while allowing for improved light scattering and trapping. One-dimenstional semiconductor nano/micro structures should be fabricated for radial p-n junction solar cell. Most of silicon wire and/or pillar arrays have been fabricated by vapour-liquid-solid (VLS) growth because of its simple and cheap process. In the case of the VLS method has some weak points, that is, the incorporation of heavy metal catalysts into the growing silicon wire, the high temperature procedure. We have tried new approaches; one is electrochemical etching, the other is noble metal catalytic etching method to overcome those problems. In this talk, the silicon pillar formation will be characterized by investigating the parameters of the electrochemical etching process such as HF concentration ratio of electrolyte, current density, back contact material, temperature of the solution, and large pre-pattern size and pitch. In the noble metal catalytic etching processes, the effect of solution composition and thickness of metal catalyst on the etching rate and morphologies of silicon was investigated. Finally, radial p-n junction wire arrays were fabricated by spin on doping (phosphor), starting from chemical etched p-Si wire arrays. In/Ga eutectic metal was used for contact metal. The energy conversion efficiency of radial p-n junction solar cell is discussed.

  • PDF