Browse > Article
http://dx.doi.org/10.14478/ace.2013.1102

Homeogenous Etched Pits on the Surface of Nb by Electrochemical Micromachining  

Kim, Kyungmin (Department of Chemical Engineering, Inha University)
Yoo, Hyeonseok (Department of Chemical Engineering, Inha University)
Park, Jiyoung (Department of Chemical Engineering, Inha University)
Shin, Sowoon (Department of Chemical Engineering, Inha University)
Choi, Jinsub (Department of Chemical Engineering, Inha University)
Publication Information
Applied Chemistry for Engineering / v.25, no.1, 2014 , pp. 53-57 More about this Journal
Abstract
We describe the preparation of highly-ordered etching pits on the Nb foil through a micromachining. The effects of electrochemical polishing on the formation of uniformly-patterned protective epoxy layer was investigated. Unlike the previous process using $O_2$ plasma, well-ordered etched pits were prepared without any dry processes. As a result, the Nb foil with the well-ordered pits of $10{\mu}m{\times}5{\mu}m$ could be obtained by electrochemical etching in methanolic electrolytes for 10 min.
Keywords
electrochemical etching; Nb etching; micro-contact printing; epoxy;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 B. H. Kim, C. W. Na, Y. S. Lee, D. K. Choi, and C. N. Chu, Micro Electrochemical machining of 3D micro structure using dilute sulfuric acid, CIRP Ann.-Manuf. Techn., 54, 191 (2005).   DOI   ScienceOn
2 M. Datta and D. Landolt, Fundamental aspects and applications of electrochemical microfabrication, Electrochem. Acta, 45, 2535 (2000).   DOI   ScienceOn
3 K. P. Rajurkar, G. Levy, A. Malshe, M. M. Sundaram, J. McGeough, X. Hu, R. Resnick, and A. DeSilva, Micro and nano machining by electro-physical and chemical processes, CIRP Ann.-Manuf. Techn., 55, 643 (2006).   DOI   ScienceOn
4 M. Datta, Fabrication of an array of precision nozzles by through-mask electrochemical micromachining, J. Electrochem. Soc., 142, 3801 (1995).   DOI
5 A. P. Malshe, K. Virwani, K. P. Rajurkar, and D. Deshpande, Investigation of nanoscale electro machining (nano-EM) in dielectric oil, CIRP Ann.-Manuf. Techn., 54, 175 (2005).   DOI   ScienceOn
6 P. F. Chauvy, P. Hoffmann, and D. Landolt, Electrochemical micromachining of titanium using laser oxide film lithography : excimer laser irradiation of anodic oxide, Appl. Surf. Sci., 211, 113 (2003).   DOI   ScienceOn
7 C. Kim, J. Y. Kim, and B. Sridharan, Comparative evaluation of drying techniques for surface micromachining, Sensor. Actuat. A-Phys., 64, 17 (1998).   DOI   ScienceOn
8 S. C. Jakeway, A. J. de Mello, and E. L. Russell, Miniaturized total analysis systems for biological analysis, Anal. Bioanal. Chem., 366, 525 (2000).
9 X. Lu and Y. Leng, Electrochemical micromachining of titanium surfaces for biomedical applications, J. Mater. Process. Tech., 169, 173 (2005).   DOI   ScienceOn
10 S. A. McAuley, H. Asharf, L. Atabo, A. Chambers, S. Hall, J. Hopkins, and G. Nicholls, Silicon micromachining using a high-density plasma source, J. Phys. D Appl. Phys., 34, 2769 (2001).   DOI   ScienceOn
11 L. P. B. Katehi, J. F. Harvey, and K. J. Herrick, 3-D integration of RF circuits using Si micromachining, IEEE Microw. Mag., 2, 30 (2001).   DOI   ScienceOn
12 T. A. Fofonoff, S. M. Martel, N. G. Hatsopoulos, J. P. Donoghue, and I. W. Hunter, Microelectrode array fabrication by electrical discharge machining and chemical etching, IEEE T. Bio-Med. Eng., 51, 890 (2004).   DOI   ScienceOn
13 Y. Mori, K. Yamamura, K. Yamauchi, K. Yoshii, T. Kataoka, K. Endo, K. Inagaki, and H. Kakiuchi, Chemical machining, J. Mater. Process Tech., 4, 225 (1993).
14 P. F. Chauvy, P. Hoffmann, and D. Landolt, Electrochemical micromachining of titanium through a laser patterned oxide film, Electrochem. Solid St., 4, C31 (2001).   DOI   ScienceOn
15 P. Allongue, P. Jiang, V. Kirchner, A. L. Trimmer, and R. Schuster, Electrochemical micromachining of p-type silicon, J. Phys. Chem. B., 108, 14434 (2004).   DOI   ScienceOn
16 J. Ihlemann and B. Wolff-Rottke, Excimer laser micro machining of inorganic dielectrics, Appl. Surf. Sci., 106, 282 (1996).   DOI   ScienceOn
17 B. Bhattacharyya, J. Munda, and M. Malapati, Advancement in electrochemical micro-machining, Int. J. Mach. Tool. Manu., 44, 1577 (2004).   DOI   ScienceOn
18 M. Datta, R. V. Shenoy, and L. T. Romankiw, Recent advances in the study of electrochemical micromachining, J. Eng. Ind. Trans. ASME, 118, 29 (1996).   DOI
19 E. Rosset, M. Datta, and D. Landolt, Electrochemical dissolution of stainless steels in flow channel cells with and without photoresist masks, J. Appl. Electrochem., 20, 69 (1990).   DOI
20 M. Datta and D. Harris, Electrochemical micromachining : An environmentally friendly, high speed processing technology, Electrochim. Acta, 42, 3007 (1997).   DOI   ScienceOn
21 K. Kim, J. Park, G. Cha, J. E. Yoo, and J. Choi, Electrochemical etching of a niobium foil in methanolic HF for electrolytic capacitor, Mater. Chem. Phys., 141, 810 (2013).   DOI   ScienceOn
22 L. Cagnon, V. Kirchner, M. Kock, R. Schuster, G. Ertl, W. T. Gmelin, and H. Kuck, Electrochemical micromachining of stainless steel by ultrashort voltage pulses, Z. Phys. Chem., 217, 299 (2003).   DOI   ScienceOn
23 M. Datta and L. T. Romankiw, Application of chemical and electrochemical micromachining in the electronics industry, J. Electrochem. Soc., 136, 285 (1989).   DOI
24 R. Shuster, V. Kirchner, P. Allongue, and G. Ertl, Electrochemical micromachining, Science, 289, 98 (2000).   DOI   ScienceOn
25 J. E. Yoo and J. Choi, Electrochemical surface enlargement of a niobium foil for electrolytic capacitor applications, Electrochem. Commun., 13, 298 (2011).   DOI   ScienceOn
26 G. Park, K. Kim, H. Lee, C. Park, Y. Kim, Y. Tak, and J. Choi, Controllable pattering of an Al surface by a PDMS stamp, Appl. Chem. Eng., 23, 501 (2012).
27 M. T. Tanvir, Y. Aoki, and H. Habazaki, Improved electrical properties of silicon-incorporated anodic niobium oxide formed on porous Nb-Si substrate, Appl. Surf. Sci., 255, 8383 (2009).   DOI   ScienceOn
28 A. C. West, C. Madore, M. Matlosz, and D. Landolt, Shape changes during through-mask electrochemical micromachining of thin metal films, J. Electrochem. Soc., 139, 499 (1992).   DOI
29 D. Zhu, N. S. Qu, H. S. Li, Y. B. Zeng, D. L. Li, and S. Q. Qian, Electrochemical micromachining of microstructures of micro hole and dimple array, CIRP Ann.-Manuf. Techn., 58, 177 (2009).   DOI   ScienceOn
30 D. K. Wickenden, J. L. Champion, R. Osiander, R. B. Givens, J. L. Lamb, J. A. Miragliotta, D. A. Oursler, and T. J. Kistenmacher, Micromachined polysilicon resonating xylophone bar magnetometer, Acta Astronaut., 52, 142 (2003).
31 J. A. Kenney and G. S. Hwang, Electrochemical machining with ultrashort voltage pulses: modelling of charging dynamics and feature profile evolution, Nanotechnology, 16, S309 (2005).   DOI   ScienceOn