• Title/Summary/Keyword: Electrochemical Performance

Search Result 1,547, Processing Time 0.033 seconds

Structural and Electrochemical Properties of Li2Mn0.5Fe0.5SiO4/C Cathode Nanocomposite

  • Chung, Young-Min;Yu, Seung-Ho;Song, Min-Seob;Kim, Sung-Soo;Cho, Won-Il
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.12
    • /
    • pp.4205-4209
    • /
    • 2011
  • The $Li_2Mn_{0.5}Fe_{0.5}SiO_4$ silicate was prepared by blending of $Li_2MnSiO_4$ and $Li_2FeSiO_4$ precursors with same molar ratio. The one of the silicates of $Li_2FeSiO_4$ is known as high capacitive up to ~330 mAh/g due to 2 mole electron exchange, and the other of $Li_2FeSiO_4$ has identical structure with $Li_2MnSiO_4$ and shows stable cycle with less capacity of ~170 mAh/g. The major drawback of silicate family is low electronic conductivity (3 orders of magnitude lower than $LiFePO_4$). To overcome this disadvantage, carbon composite of the silicate compound was prepared by sucrose mixing with silicate precursors and heat-treated in reducing atmosphere. The crystal structure and physical morphology of $Li_2Mn_{0.5}Fe_{0.5}SiO_4$ was investigated by X-ray diffraction, scanning electron microscopy, and high resolution transmission electron microscopy. The $Li_2Mn_{0.5}Fe_{0.5}SiO_4$/C nanocomposite has a maximum discharge capacity of 200 mAh/g, and 63% of its discharge capacity is retained after the tenth cycles. We have realized that more than 1 mole of electrons are exchanged in $Li_2Mn_{0.5}Fe_{0.5}SiO_4$. We have observed that $Li_2Mn_{0.5}Fe_{0.5}SiO_4$ is unstable structure upon first delithiation with structural collapse. High temperature cell performance result shows high capacity of discharge capacity (244 mAh/g) but it had poor capacity retention (50%) due to the accelerated structural degradation and related reaction.

The Optimum Conditions for the Simultaneous Determination of Neurotransmitters in Rat Brain Striatum by High Performance Liquid Chromatography with Electrochemical Detection (HPLC-ECD를 이용한 흰쥐 뇌의 선조체 중 신경전달물질의 동시분석시 최적 조건)

  • Kang, Jong-Seong;Mun, Min-Seon;Shin, Hyung-Seon;Lee, Soon-Chul
    • Analytical Science and Technology
    • /
    • v.8 no.2
    • /
    • pp.215-220
    • /
    • 1995
  • A simple, efficient and sensitive method was described for the simultaneous determination of catecholamine, indoleamine and related metabolites from the homogenates of the rat brain striatum by HPLC-ECD. The optimum mobile phase on a reverse phase $C_{18}$ column was 35mM sodium acetate buffer(included 10mM citric acid, 0.13mM $Na_4EDTA$, 0.58mM SOS, pH3-4):MeOH=85:15. The column temperature was $30^{\circ}C$. Dopamine(DA), 3, 4-dihydroxyphenyl acetic acid(DOPAC), homovanilic acid(HVA), 5-hydroxyindole acetic acid(5-HIAA), serotonin(5-HT) and noradrenaline(NA) could be separated and analysed to very small amount. The detection limits of this method were 2~10pg per injection for all components. The effects of age and sex of rat on the contents of the catecholamines and their metabolites in rat brain striatum were studied. The levels of DA and 5-HT contents of the 7 week old female rats were higher than those of the 7 week old male rats. As the age of rat increases, the contents of DOPAC increased significantly.

  • PDF

Effects of Hyperoxia on 8-Hydroxydeoxyguanosine Formation in Carbon Monoxide Exposed Rats (일산화탄소 중독시 고압산소투여가 8-hydroxydeoxyguanosine 생성에 미치는 영향)

  • Kim, Heon;Cho, Soo-Hun;Chung, Myung-Hee
    • Journal of Preventive Medicine and Public Health
    • /
    • v.27 no.1 s.45
    • /
    • pp.84-106
    • /
    • 1994
  • Hyperbaric oxygen (HBO) therapy for carbon monoxide (CO) poisoning eventually inducing the hypoxia-reoxygenation condition, may produce oxygen free radicals, which forms 8-hydroxydeoxyguanosine (8-OH-dG) by attacking C-8 position of deoxyguanosine (dG) in DNA. Effects of oxygen partial pressure or duration of HBO therapy with or without CO poisoning on the tissue 8-OH-dG formation were investigated. Male Sprague-Dawley rats were grouped and exposed to air (control group), 4000 ppm of CO for 10 to 30 minutes (CO only group), air for 30 minutes after 30 minute exposure to 4000 ppm of CO(CO-air exposure group), HBO after 30 minute exposure to 4000 ppm of CO(CO-HBO group), or HBO therapy fo. $10{\sim}120$ minutes(HBO only group). The 8-OH-4G concentrations in the brain and the lung tissues were measured with high performance liquid chromatography and electrochemical detector (ECD). Average concentrations of the 8-OH-dG of each group were statistically compared. In the brain tissues, 8-OH-dG concentrations of the CO only group, the CO-air exposure group, and the CO-HBO group did not significantly differ from those of the control group. Similar insignificance was also found between the CO-HBO group and the HBO only groups. No appreciable dose-response relationship was observed between the 8-OH-dG concentration and the oxygen partial pressure or the duration of HBO. However, the 8-OH-dG concentrations of the 30 minute CO only group were higher than those of the CO-air exposure group (p-value<0.05). In the lung tissues, there were no significant differences between the 8-OH-dG concentrations of the control group and those of the CO only group, the CO-air exposure group, and the CO-HBO group. However, mean 8-OH-dG concentration of the CO-air exposure group was significantly higher than that of the CO only group under the same CO exposure condition(p-value<0.05). With the duration of CO exposure, the 8-OH-dG concentrations of the lung tissues decreased significantly (p-value<0.05). The concentrations of 8-OH-dG in the lung tissues proportionally increased with the duration of HBO, but no such relation was observed with the oxygen partial pressure. These results suggest that the brain may be more resistant to oxygen free radicals as compared with the lungs, and that oxygen toxicity following HBO may be affected by factors other than oxygen free radicals.

  • PDF

Effect of Annealing Temperature on the Anode Properties of TiO2 Nanotubes for Rechargeable Lithium Batteries (열처리 온도에 따른 TiO2 나노튜브의 리튬이차전지 음전극 특성)

  • Choi, Min Gyu;Kang, Kun Young;Lee, Young-Gi;Kim, Kwang Man
    • Korean Chemical Engineering Research
    • /
    • v.50 no.1
    • /
    • pp.25-29
    • /
    • 2012
  • $TiO_2$ nanotubes are prepared from rutile prticles via an alkaline hydrothermal synthesis and the consequent heat treatment at $300{\sim}500^{\circ}C$. The physical and electrochemical properties of the $TiO_2$ nanotubes are characterized for use as a anode material of rechargeable lithium battery. In particular, the microscale dusts as an impurity component occurred in the purification step after the hydrothermal reaction are completely removed to yield $TiO_2$ nanotube with a higher specific surface area and more obvious crystalline phases. As the annealing temperature increases, the specific surface area is slightly decreased due to some aggregation between the isotropically dispersed nanotubes. Highest initial discharge capacity of 250 mAh $g^{-1}$ is achieved for the $TiO_2$ nanotube annealed at $300^{\circ}C$, whereas the $400^{\circ}C$ $TiO_2$ nanotube shows the superior cycle performance and high-rate capability.

Electrochemical Properties of Using MnO2-HCS Composite for Supercapacitor (MnO2-HCS 복합체를 이용한 슈퍼커패시터의 전기화학적 특성)

  • Jin, En Mei;Jeong, Sang Mun
    • Clean Technology
    • /
    • v.24 no.3
    • /
    • pp.183-189
    • /
    • 2018
  • Hollow carbon spheres (HCS) and carbon spheres (CS) were prepared by a hydrothermal reaction and they were introduced as a substrate for the deposition of $MnO_2$ nanoparticles. The $MnO_2$ nanoparticles were deposited on the carbon surface by a chemical redox deposition method. After deposition, the $MnO_2$ nanoparticles were uniformally distributed on the carbon surface in a slit-shape, and sparse $MnO_2$ slits appeared on the HCS surface. The $MnO_2-HCS$ showed an initial specific capacitance of $164.1F\;g^{-1}$ at scan rate of $20mv\;s^{-1}$, and after 1,000 cycles, the specific capacitance was maintained to $141.3F\;g^{-1}$. The capacity retention of $MnO_2-HCS$ and $MnO_2-CS$ were calculated to 86% and 78% in the cycle performance test up to 1,000 cycles, respectively. $MnO_2-HCS$ showed a good cycle stability due to the mesoporous hollow structure which can cause a faster diffusion of the electrolyte and can easily adsorb and desorb $Na^+$ ions on the surface of the electrode.

Progress in Composite Polymer Membrane for Application as Separator in Lithium Ion Battery (리튬 이온 전지의 분리막으로 사용하기 위한 복합 고분자 막의 동향)

  • Oh, Seok Hyeon;Patel, Rajkumar
    • Membrane Journal
    • /
    • v.30 no.4
    • /
    • pp.228-241
    • /
    • 2020
  • Separators, which produces physical layer between a cathode and anode, are getting enormous attention as the quality of the separator determines the performance of lithium ion batteries (LIBs). Porous membranes based on polyethylene (PE) and polypropylene (PP) are generally utilized as the separator of LIBs because of their high electrochemical stability and suitable mechanical strength. However, low thermal resistance and wettability of PE and PP membranes limited the potential of LIBs. Operating at the temperature exceeding the melting point of membranes, the separators change their structures which lead to short circuit of LIBs. Low wettability of the separators corresponds to low ionic conductivity which increases the cell resistance. To overcome these weaknesses of PE and PP separators, different types of separator were prepared by co-electrospinning, applying coating layer, forming core shell around membrane, and papermaking method. The synthesized separator greatly enhanced the heat resistance and wettability of separator and mechanical properties like flexibility and tensile strength. In this review different type of polymer membrane used as separator in lithium ion battery are discussed.

Performance Evaluation to Develop an Engineering Scale Cathode Processor by Multiphase Numerical Analysis (다상유동 전산모사를 통한 공학 규모의 cathode processor의 성능평가)

  • Yoo, Bung Uk;Park, Sung Bin;Kwon, Sang Woon;Kim, Jeong Guck;Lee, Han Soo;Kim, In Tae;Lee, Jong Hyeon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.12 no.1
    • /
    • pp.7-17
    • /
    • 2014
  • Molten salt electrorefining process achieves uranium deposits at cathode using an electrochemical processing of spent nuclear fuel. In order to recover pure uranium from cathode deposit containing about 30wt% salt, the adhered salt should be removed by cathode process (CP). The CP has been regarded as one of the bottle-neck of the pyroprocess as the large amount of uranium is treated in this step and the operation parameters are crucial to determine the final purity of the product. Currently, related research activities are mainly based on experiments consequently it is hard to observe processing variables such as temperature, pressure and salt gas behavior during the operation of the cathode process. Hence, in this study operation procedure of cathode process is numerically described by using appropriate mathematical model. The key parameters of this research are the amount of evaporation at the distillation part, diffusion coefficient of gas phase salt in cathode processor and phase change rate at condensation part. Each of these conditions were composed by Hertz-Langmuir equation, Chapman-Enskog theory, and interphase mass flow application in ANSYS-CFX. And physical properties of salt were taken from the data base in HSC Chemistry. In this study, calculation results on the salt gas behavior and optimal operating condition are discussed. The numerical analysis results could be used to closely understand the physical phenomenon during CP and for further scale up to commercial level.

Bioequivalence Evaluation of Pylocin Tablet to Klaricid Tablet (Clarithyomycin, 250 mg) (클래리시드 정(클래리스로마이신 250 mg)에 대한 파이로신 정의 생물학적 동등성)

  • Cho, Hea Young;Kim, Soo Jin;Sim, Young Sun;Lim, Dong Koo;Oh, In Joon;Lee, Yong Bok;Moon, Jai Dong
    • Korean Journal of Clinical Pharmacy
    • /
    • v.10 no.1
    • /
    • pp.13-18
    • /
    • 2000
  • The bioequivalence of two clarithromycin tablets, the $Klaricid^{TM}$ (Ciba-Geigy Korea Ltd.) and the $Pylocin^{TM}$ (Kyungdong Pharmaceutical Co., Ltd.), was evaluated according to the Korean Guidelines for Bioequivalence Test (KGBT 1998). Sixteen healthy male volunteers ($20\sim26$ years old) were randomly divided into two groups and a randomized $2\times2$ cross-over study was employed. After one tablet containing 250 mg of clarithromycin was orally administered, blood sample was taken at predetermined time intervals, and the concentrations of clarithromycin in serum were determined using high-performance liquid chromatographic method with electrochemical detector. The pharmaco-kinetic parameters (area under the concentration-time curve: $AUC_t$, maximum concentration; $C_{max}$ and time to maximum concentration; $T_{max}$) were calculated and analysis of variance (ANOVA) was utilized for the statistical analysis of parameters. The results showed that the differences in $AUC_t,\;C_{max}\;and\;T_{max}$ between two tablets based on $Klaricid^{TM}$ tablet were $-0.22\%,\;-0.48\%\;and\;-1.63\%$, respectively. The powers $(1-\beta)\;for\;AUC_t,\;C_{max}\;and\;T_{max}\;were\;99.07\%,\;88.15\%\;and\;99.99\%$, respectively. Detectable differences $(\Delta)\;and\;90\%$ confidence intervals ($\alpha$=0.10) were all less than $\pm20\%$ All the parameters above met the criteria of KGBT 1998, indicating that $Pylocin^{TM}$ tablet is bioequivalent to $Klaricid^{TM}$ tablet.

  • PDF

Performance Evaluation of Biofuel cell using Benzoquinone Entrapped Polyethyleneimine-Carbon nanotube supporter Based Enzymatic Catalyst (벤조퀴논 포집 폴리에틸렌이민-탄소나노튜브 지지체 기반 효소촉매의 바이오연료전지로서의 성능평가)

  • Ahn, Yeonjoo;Chung, Yongjin;Kwon, Yongchai
    • Korean Chemical Engineering Research
    • /
    • v.55 no.2
    • /
    • pp.258-263
    • /
    • 2017
  • In this study, we synthesized biocatalyst consisting of glucose oxidase (GOx), polyethyleneimine (PEI) and carbon nanotube (CNT) with addition of p-benzoquinone (BQ) that was considered anodic catalysts of enzymatic biofuel cell (EBC). For doing this, PEI/CNT supporter was bonded with BQ by physical entrapping method stemmed from electrostatic attractive force ([BQ/PEI]/CNT). In turn, GOx moiety was further immobilized on the [BQ/PEI]/CNT to form GOx/[BQ/PEI]/CNT catalyst. This catalyst has a special advantage in that the BQ that has been usually dissolved into electrolyte was immobilized on supporter. According to the electrochemical analysis, maximum current density of the GOx/[BQ/PEI]/CNT catalyst was 1.9 fold better than that of the catalyst that did not entrap BQ with the value of $34.16{\mu}A/cm^2$, verifying that catalytic activity of the catalyst was enhanced by adoption of BQ. Also, when it was used as anodic catalyst of the EBC, its maximum power density was 1.2 fold better than that of EBC using the catalyst that did not entrap BQ with the value of $0.91mW/cm^2$. Based on such results, it turned out that the GOx/[BQ/PEI]/CNT catalyst was promising and viable as anodic catalyst of EBC.

Effect of Ephedrine on the Levels of Biogenic Amines and Their Metabolites in Rat Brain (Ephedrine이 뇌내 Biogenic Amine 함량에 미치는 영향)

  • Lee, Kyung-Eun
    • The Korean Journal of Pharmacology
    • /
    • v.31 no.2
    • /
    • pp.153-164
    • /
    • 1995
  • Sympathomimetic amines, especially ephedrine, are a major ingredient in proprietary medications for symptomatic treatment of upper respiratory infections. Their frequent uses can lead to occasional instances of abuse and habituation. The clinical symptoms of ephedrine abuse are similar to that of amphetamine psychosis and resemble closely that of schizophrenia. Because both amphetamine psychosis and schizophrenia are thought to be mediated primarily through the action on catecholamines, ephedrine-induced changes of the biogenic amines can be suspected. However, there were few studies about the central effects of ephedrine because of the milder central action than peripheral. Therefore, the present investigation was undertaken to elucidate the relations between the effects of single or repeated administration of ephedrine on the regional levels of biogenic amines in rat brain and ephedrine-induced CNS stimulation. The male Sprague-Dawley rats weighing $100{\sim}200\;g$ were used. After single or repeated administrations of ephedrine, blocks of tissue were obtained from frontal cortex, corpus striatum, hippocampus, thalamus, hypothalamus, substantia nigra and cerebellum. The concentration of biogenic amines(norepinephrine, epinephrine, dopamine, 5-hydroxytryptamine(5-HT)) and their metabolites (3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid(HVA), 5-hydroxyindoleacetic acid(5-HIAA)) were measured by means of high performance liquid chromatography-electrochemical detector(HPLC-ECD). The results obtained were as follows: 1) In the normal rat, the concentration of norepinephrine was the highest in hypothalamus. Dopamine, DOPAC and HVA were highest in corpus striatum, and 5-HT and 5-HIAA were highest in substantia nigra. Epinephrine was not detectable in any part of the brain tissue. 2) In a single administration of ephedrine, the concentration of DOPAC was decreased in corpus striatum. However, the other biogenic amines and their metabolites were not changed. 3) In repeated administration of ephedrine, the concentration of norepinephrine was decreased in all brain region checked. Dopamine was decreased in corpus striatum and substantia nigra and, increased in hypothalamus, and HVA was decreased in corpus striatum. 5-HT was decreased in all brain region except cerebellum and, 5-HIAA was decreased only in frontal cortex. The ratio of 5-HIAA/5-HT was increased in corpus striatum, thalamus, hypothalamus and substantia nigra. These data indicated that, although a single administration of ephedrine did not change the central neurotransmitters, repeated administration of ephedrine caused the decreases of norepinephrine and 5-HT in the most regions of brain, which may be responsible for the emergence of abnormal behavioral effect after ephedrine abuse.

  • PDF