DOI QR코드

DOI QR Code

Electrochemical Properties of Using MnO2-HCS Composite for Supercapacitor

MnO2-HCS 복합체를 이용한 슈퍼커패시터의 전기화학적 특성

  • Jin, En Mei (Department of Chemical Engineering, Chungbuk National University) ;
  • Jeong, Sang Mun (Department of Chemical Engineering, Chungbuk National University)
  • 김은미 (충북대학교 화학공학과) ;
  • 정상문 (충북대학교 화학공학과)
  • Received : 2018.06.18
  • Accepted : 2018.07.30
  • Published : 2018.09.28

Abstract

Hollow carbon spheres (HCS) and carbon spheres (CS) were prepared by a hydrothermal reaction and they were introduced as a substrate for the deposition of $MnO_2$ nanoparticles. The $MnO_2$ nanoparticles were deposited on the carbon surface by a chemical redox deposition method. After deposition, the $MnO_2$ nanoparticles were uniformally distributed on the carbon surface in a slit-shape, and sparse $MnO_2$ slits appeared on the HCS surface. The $MnO_2-HCS$ showed an initial specific capacitance of $164.1F\;g^{-1}$ at scan rate of $20mv\;s^{-1}$, and after 1,000 cycles, the specific capacitance was maintained to $141.3F\;g^{-1}$. The capacity retention of $MnO_2-HCS$ and $MnO_2-CS$ were calculated to 86% and 78% in the cycle performance test up to 1,000 cycles, respectively. $MnO_2-HCS$ showed a good cycle stability due to the mesoporous hollow structure which can cause a faster diffusion of the electrolyte and can easily adsorb and desorb $Na^+$ ions on the surface of the electrode.

중공형 구형 탄소(hollow carbon spheres, HCS) 또는 구형 탄소(carbon spheres, CS)는 수열합성법에 의해 제조되었고 $MnO_2$를 증착하기 위한 탄소 지지체로 사용하였다. $MnO_2$는 화학적 레독스 증착법에 의해 HCS 또는 CS 표면에 증착하였다. 화학적 산화환원 증착법은 미립자 지지체의 표면에 다른 산화물 합성에 특히 효과적이다. $MnO_2$는 HCS 또는 CS의 표면에 일정한 슬릿 모양의 분포를 보였고 HCS 표면에서 보다 엉성한 슬릿 모양의 $MnO_2$ 입자가 생성되었다. $MnO_2-HCS$$20mv\;s^{-1}$의 스캔 속도에서 초기 사이클에서 약 $164.1F\;g^{-1}$의 정전용량을 나타내었고 1000 사이클 후에는 약 $141.3F\;g^{-1}$의 정전용량을 나타내었다. 1000 사이클 기준으로 $MnO_2-HCS$$MnO_2-CS$는 각각 86%와 78%의 용량유지율을 나타내었다. 이것은 HCS 표면에서 엉성한 슬릿모양의 $MnO_2$의 성장이 전해질의 흐름 및 전해질 내의 $Na^+$ 이온의 흡탈착이 보다 용이하여 나타난 결과로 생각된다.

Keywords

References

  1. Ingole, S. M., Navale, S. T., Navale, Y. H., Dhole, I. A., Mane, R. S., Stadler, F. J., and Patil, V. B., "Galvanostatically Electroplated $MnO_2$ Nanoplate-Type Electrode for Potential Electrochemical Pseudocapacitor Application," J. Solid State Electrochem., 21(6), 1817-1826 (2017). https://doi.org/10.1007/s10008-017-3557-8
  2. Lee, W. J., Jeong, S. M., Lee, H., Kim, B. J., An, K. H., Park, Y. K., and Jung, S. C., "Facile Synthesis of Iron-Ruthenium Bimetallic Oxide Nanoparticles on Carbon Nanotube Composites by Liquid Phase Plasma Method for Supercapacitor," Korean J. Chem. Eng., 34(11), 2993-2998 (2017). https://doi.org/10.1007/s11814-017-0205-z
  3. Lee, H. J., Jin, E. M., and Jeong, S. M., "Electrochemical Properties of Porous $Co(OH)_2$ Nano-Flake Thin Film Prepared by Electro-Deposition for Supercapacitor," Korean Chem. Eng. Res., 54(2), 157-162 (2016). https://doi.org/10.9713/kcer.2016.54.2.157
  4. Zhao, Y., Li, M. P., Liu, S., and Islam, M. F., "Superelastic Pseudocapacitors from Freestanding $MnO_2$-Decorated Graphene-Coated Carbon Nanotube Aerogels," ACS Appl. Mater. Interfaces, 9, 23810-23819 (2017). https://doi.org/10.1021/acsami.7b06210
  5. Jeong, H. Y., and Jeong, S. M., "Electrochemical Properties of Graphene-Vanadium Oxide Composite Prepared by Electro-Deposition for Electrochemical Capacitors," Korean Chem. Eng. Res., 53(2), 131-136 (2015). https://doi.org/10.9713/kcer.2015.53.2.131
  6. Wu, M. S., and Chiang, P. J., "Fabrication of Nanostructured Manganese Oxide Electrodes for Electrochemical Capacitors," Electrochem. Solid-State Lett., 7(6), A123-A126 (2004). https://doi.org/10.1149/1.1695533
  7. Dong, X., Shen, W., Gu, J., Xiong, L., Zhu, Y., Li, H., and Shi, J., "$MnO_2$-Embedded-in-Mesoporous-Carbon-Wall Structure for Use as Electrochemical Capacitors," J. Phys. Chem. B., 110(12), 6015-6019 (2006). https://doi.org/10.1021/jp056754n
  8. Lee, S. W., Kim, J., Chen, S., Hammond, P. T., and Shao-Horn, Y., "Carbon Nanotube/Manganese Oxide Ultrathin Film Electrodes for Electrochemical Capacitors," ACS Nano, 4(7), 3889-3896 (2010). https://doi.org/10.1021/nn100681d
  9. Huang, F., and Chen, D., "Towards the Upper Bound of Electrochemical Performance of ACNT-Polyaniline Arrays as Supercapacitors," Energy Environ. Sci., 5, 5833-5841 (2012). https://doi.org/10.1039/C1EE01989A
  10. Zhu, Q., Liu, K., Zhou, J., Hu, H., Chen, W., and Yu, Y., "Design of a Unique 3D-Nanostructure to Make $MnO_2$ Work as Supercapacitor Material in Acid Environment," Chem. Eng. J., 321, 554-563 (2017). https://doi.org/10.1016/j.cej.2017.03.147
  11. Yan, J., Fan, Z., Wei, T., Qian, W., Zhang, M., and Wei, F., "Fast and Reversible Surface Redox Reaction of Graphene-$MnO_2$ Composites as Supercapacitor Electrodes," Carbon, 48, 3825-3833 (2010). https://doi.org/10.1016/j.carbon.2010.06.047
  12. Li, L., Hu, Z. H., An, N., Yang, Y. Y., Li, Z. M., and Wu, H. Y., "Facile Synthesis of $MnO_2$/CNTs Composite for Supercapacitor Electrodes with Long Cycle Stability," J. Phys. Chem. C., 118, 22865-22872 (2014). https://doi.org/10.1021/jp505744p
  13. Huang, X., Lv, D., Yue, H., Attia, A., and Yang, Y., "Controllable Synthesis of ${\alpha}$-and ${\beta}$-$MnO_2$: Cationic Effect on Hydrothermal Crystallization," Nanotechnology, 19, 225606 (2008). https://doi.org/10.1088/0957-4484/19/22/225606
  14. Fan, Z., Yan, J., Wi, T., Zhi, L., Ning, G., Li, T., and Wei, F., "Asymmetric Supercapacitors Based on Graphene/$MnO_2$ and Activated Carbon Nanofiber Electrodes with High Power and Energy Density," Adv. Funct. Mater., 21(12), 2366-2375 (2011). https://doi.org/10.1002/adfm.201100058
  15. Tao, T., Zhang, L., Jiang, H., and Li, C., "Functional Carbon Nanotube/Mesoporous Carbon/$MnO_2$ Hybrid Network for High-Performance Supercapacitors," J. Nanomater., 2014, 568561 (2014).
  16. Xu, Z., Sun, S., Cui, W., Lv, J., Geng, Y., Li, H., and Deing, J., "Interconnected Network of Ultrafine $MnO_2$ Nanowires on Carbon Cloth with Weed-like Morphology for High-Performance Supercapacitor Electrodes," Electrochim. Acta, 268, 340-346 (2018). https://doi.org/10.1016/j.electacta.2018.02.138
  17. Tang, Q., Jiang, L., Liu, J., Wang, S., and Sun, G., "Effect of Surface Manganese Valence of Manganese Oxides on the Activity of the Oxygen Reduction Reaction in Alkaline Media," ACS Catal., 4, 457-463 (2014). https://doi.org/10.1021/cs400938s
  18. Hao, J., Liu, Y., Shen, H., Li, W., Li, J., Li, Y., and Chen, Q., "Effect of Nickel-Ion Doping in $MnO_2$ Nanoneedles as Electrocatalyst for the Oxygen Reduction Reaction," J. Mater Sci: Mater Electron., 27(6), 6598-6605 (2016). https://doi.org/10.1007/s10854-016-4606-2
  19. Chen, H., Wang, M. Q., Yu, Y., Liu, H., Lu, S. Y., Bao, S. J., and Xi, M., "Assembling Hollow Cobalt Sulfide Nanocages Array on Graphene-like Manganese Dioxide Nanosheets for Superior Electrochemical Capacitors," ACS Appl. Mater. Interfaces, 9(40), 35040-35047 (2017). https://doi.org/10.1021/acsami.7b12069