• Title/Summary/Keyword: Electrochemical Performance

Search Result 1,558, Processing Time 0.029 seconds

Characteristics of Sr0.92Y0.08Ti1-xVxO3-δ (x = 0.01, 0.04, 0.07, 0.12) Anode for Using H2S Containing Fuel in Solid Oxide Fuel Cells (H2S를 포함하는 연료를 사용하기 위한 고체산화물 연료전지용 Sr0.92Y0.08Ti1-xVxO3-δ 연료극 특성)

  • Jang, Geun Young;Kim, Jun Ho;Mo, Su In;Park, Gwang Seon;Yun, Jeong Woo
    • Korean Chemical Engineering Research
    • /
    • v.59 no.4
    • /
    • pp.557-564
    • /
    • 2021
  • Sr0.92Y0.08Ti1-xVxO3-δ (SYTV) with perovskite structure was investigated as an alternative anode to utilize H2S containing fuels in solid oxide fuel cells. To improve the electrochemical performance of Sr0.92Y0.08TiO3-δ (SYT), vanadium(V) was substituted to titanium(Ti) at the B-site of the SYT perovskites. The SYTV synthesized by the Pechini method was chemically compatible with the YSZ electrolyte without additional by-products formation under the cell fabricating conditions. As increasing V substitution amounts, the oxygen vacancies increased, resulting to increasing ionic conductivity of the anode. The cell performance in pure H2 at 850 ℃ is 19.30 mW/cm2 and 34.87 mW/cm2 for a 1 mol.% and 7 mol.% of V substituted anodes, respectively. The cell performance using H2 fuel containing 1000 ppm of H2S at 850 ℃ was 23.37 mW/cm2 and 73.11 mW/cm2 for a 1 mol.% and 7 mol.% of V substituted anodes, respectively.

Alteration of Biosynthesis and Secretion of Adrenal Catecholamines in Cycling Rat (발정주기 중 흰쥐 부신에서의 카테콜아민 합성과 분비 변화)

  • 이성호
    • Development and Reproduction
    • /
    • v.6 no.2
    • /
    • pp.105-110
    • /
    • 2002
  • Numerous hormones are involved in the regulation of reproduction. Among them, estrogen and progesterone are the most important ovarian steroid hormones regulating female fertility. On the other hand, diverse stressors impede female receptivity and fertility. Since norepinephrine(NE) and epinephrine(E) are released from the adrenal during stress, it might play a role in stress-induced disruptions of fEmale reproductive parameters. The present study was performed to analyze the changes in adrenal catecholaminergic activities in cycling rats. The tissue content and secretion level of catecholamines were determined by high performance liquid chromatography coupled with electrochemical detector(HPLC-ECD). Adrenomedullary content of norepinephrine(NE) was increased on proestrus stage (59.47 $\pm$ 6.86 ug/gland), peaked on diestrus I stage(65.22 $\pm$ 5.99 ug/gland), and was nadir on diestrus II stage(41.63 $\pm$ 1.33 ug/gland). The highest E content was observed on proestrus stage(361.86 $\pm$ 15.58 ug/gland) while the lowest level was on diestrus II stage(285.58 $\pm$ 12.25 ug/gland). In addition to these observations, a significant reduction of the NE : E ratio was observed (1 : 4.81 on diestrus I vs 1 : 6.13~7.02 on other stages). In vitro secretion of adrenal NE and E was increased on proestrus stage, peaked on estrus stage, and decreased on diestrus II stage. Interestingly, the NE : E ratio in conditioned media was significantly increased on estrus stage (1 : 3.32 vs 1 : 2.34~2.65 on other stages. The biosynthesis of NE and E is mediated by tyrosine hydroxylase(TH) and phenylethanolamine-N-methyltransferase(PNMT) which acts conversion of tyrosine into DOPA and NE into E, respectively. These finding demonstrated that sex steroids, during setrous cycle, seem to be able to modify the adrenal catecholamines biosynthesis and secretion with stage-specific manner by modulation of the enzyme activities.

  • PDF

The effects of chromium exposure on sister chromatid exchange and concentration of 8-hydroxydeoxyguanosine (크롬 폭로가 자매염색분체교환 빈도 및 8-hydroxydeoxyguanosine 농도에 미치는 영향)

  • Han, Sang-Hwan;Cho, Soo-Hun;Kim, Heon;Ha, Mi-Na;Joo, Young-Soo;Park, Soo-Min;Kwon, Ho-Jang;Kim, Yong-Dae;Chung, Myung-Hee
    • Journal of Preventive Medicine and Public Health
    • /
    • v.28 no.2 s.50
    • /
    • pp.511-525
    • /
    • 1995
  • To elucidate some DNA adducts as a biological marker for workers of chromate pigment, the effects of chromium exposure on the formation of 8-hydroxydeoxyguanosine(8-OH-dG) and sister chromatid exchanges(SCEs) frequency in 38 workers of a pigment plant in Bucheon which utilized lead chromates, were examined. The chromium contents of venous blood and urine were measured as working environmental exposure level. The concentrations of 8-OH-dG in DNA isolated from lymphocytes were determined with high performance liquid chromatography and electrochemical detector and denoted as a molar ratio of 8-OH-dG to deoxyguanosine(dG). The SCEs frequency were analyzed in DNA isolated from lymphocytes. A significant correlation was found between creatinine adjusted urine chromium concentration and the molar ratio of 8-OH-dG to dG(r=0.47, p<0.01). After adjusting the current smoking habit, the correlation coefficient was increased(r=0.62, p<0.05). However, there was no significant correlation between the SCE frequency and chromium exposure. This significant results between molar ratio of 8-OH-dG to dG and chromium exposure are in good agreement with in vitro studies that support the importance of DNA adduct formation for the carcinogenic effect of chromium.

  • PDF

A Study on the Adsorption and Desorption Characteristics of Metal-Impregnated Activated Carbons with Metal Precursors for the Regeneration and Concentration of Ammonia (암모니아의 재생 및 농축을 위한 금속 전구체에 따른 금속 첨착 활성탄의 흡착 및 탈착 특성에 관한 연구)

  • Cho, Gwang Hee;Park, Ji Hye;Rasheed, Haroon Ur;Yoon, Hyung Chul;Yi, Kwang Bok
    • Clean Technology
    • /
    • v.26 no.2
    • /
    • pp.137-144
    • /
    • 2020
  • Metal-impregnated activated carbons were prepared via ultrasonic-assisted impregnation method for regeneration and low ammonia concentration. Magnesium and copper were selected as metals, while chloride (Cl-) and nitrate (NO3-) precursors were used to impregnate the surface of activated carbon. The physical and chemical properties of the prepared adsorbents were characterized by TGA, BET, and NH3-TPD. The ammonia breakthrough test was carried out using a fixed bed and flowing ammonia gas (1000 mg L-1 NH3, balanced N2) at 100 mL min-1, under conditions of temperature swing adsorption (TSA) and pressure swing adsorption (PSA, 0.3, 0.5, 0.7, 0.9 Mpa). The adsorption and desorption performance of ammonia were in the order of AC-Mg(Cl) > AC-Cu(Cl) > AC-Mg(N) > AC-Cu(N) > AC through NH3-TPD and TSA and PSA processes. AC-Mg(Cl) using MgCl2 showed the average adsorption amount of 2.138 mmol/g at TSA process. Also, AC-Mg(Cl) showed the highest initial adsorption amount of 3.848 mmol/g at PSA 0.9 Mpa. When metal impregnated the surface of the activated carbon, it was confirmed that not only physical adsorption, but also chemical adsorption increased, making enhancement in adsorption and desorption performances possible. Also, the prepared adsorbents showed stable adsorption and desorption performances despite repeated processes, confirming their applicability in the TSA and PSA processes.

Electrochemical Performance as the Positive Electrode of Polyaniline and Polypyrrole Hollow Sphere with Different Shell Thickness (껍질 두께가 다른 폴리아닐린과 폴리피롤 속 빈 구형체 양전극의 전기화학적 성능)

  • Yun, Su-Ryeon;Hwang, Seung-Gi;Cho, Sung-Woo;Kang, Yongku;Ryu, Kawng-Sun
    • Applied Chemistry for Engineering
    • /
    • v.23 no.2
    • /
    • pp.131-137
    • /
    • 2012
  • Polyaniline (PANI) and polypyrrole (Ppy) hollow sphere structures with controlled shell thicknesses can be easily synthesized than those of using a layer-by-layer method for cathode active material of lithium-ion batteries. Polystyrene (PS) core was synthesized by emulsion polymerization using an anion surfactant. The shell thicknesses of PANI and Ppy were controlled by amounts of aniline and pyrrole monomers. PS was removed by an organic solution. This structure increased in contact with an electrolyte and a specific capacity in lithium-ion batteries. But polymers have disadvantages such as the difficult control of molecular weights and low densities. These disadvantages were completed by controlled shell thicknesses. The amount of aniline monomer increased from 1.2, 2.4, 3.6, 4.8 to 6.0 mL, and the shell thicknesses were 30.2, 38.0, 42.2, 48.2, and 52.4 nm, respectively. And the amount of pyrrole monomer was 0.6, 1.2, 2.4 and 3.6 mL, the shell thicknesses were 16.0, 22.0, 27.0 and 34.0 nm, respectively. In the cathode materials with controlled shell thicknesses, shell thicknesses of the PANI hollow spheres were 30.2, 42.2, and 52.4 nm, and discharge specific capacities of after 10 cycle were ~18, ~29, and ~62 mAh/g, respectively. The shell thicknesses of the Ppy hollow spheres were 16.0, 22.0, 27.0 and 34.0 nm, and discharge specific capacities of after 15 cycle were ~15, ~36, ~56, and ~77 mAh/g, respectively. Thus, shell thicknesses of PANI and Ppy increased, the specific capacities increased.

Effect of Terephthalaldehyde to Facilitate Electron Transfer in Heme-mimic Catalyst and Its Use in Membraneless Hydrogen Peroxide Fuel Cell (테레프탈알데하이드의 전자전달 강화효과에 따른 헴 단백질 모방 촉매의 성능 향상 및 이를 이용한 비분리막형 과산화수소 연료전지)

  • Jeon, Sieun;An, Heeyeon;Chung, Yongjin
    • Korean Chemical Engineering Research
    • /
    • v.60 no.4
    • /
    • pp.588-593
    • /
    • 2022
  • Terephthalaldehyde (TPA) is introduced as a cross liker to enhance electron transfer of hemin-based cathodic catalyst consisting of polyethyleneimine (PEI), carbon nanotube (CNT) for hydrogen peroxide reduction reaction (HPRR). In the cyclic voltammetry (CV) test with 10 mM H2O2 in phosphate buffer solution (pH 7.4), the current density for HPRR of the suggested catalyst (CNT/PEI/hemin/PEI/TPA) shows 0.2813 mA cm-2 (at 0.2 V vs. Ag/AgCl), which is 2.43 and 1.87 times of non-cross-linked (CNT/PEI/hemin/PEI) and conventional cross liker (glutaraldehyde, GA) used catalyst (CNT/PEI/hemin/PEI/GA), respectively. In the case of onset potential for HPRR, that of CNT/PEI/hemin/PEI/TPA is observed at 0.544 V, while those of CNT/PEI/hemin/PEI and CNT/PEI/hemin/PEI/GA are 0.511 and 0.471 V, respectively. These results indicate that TPA plays a role in facilitating electron transfer between the electrodes and substrates due to the π-conjugated cross-linking bonds, whereas conventional GA cross-linker increases the overpotential by interrupting electron and mass transfer. Electrochemical impedance spectroscopy (EIS) results also display the same tendency. The charge transfer resistance (Rct) of CNT/PEI/hemin/PEI/TPA decreases about 6.2% from that of CNT/PEI/hemin/PEI, while CNT/PEI/hemin/PEI/GA shows the highest Rct. The polarization curve using each catalyst also supports the superiority of TPA cross liker. The maximum power density of CNT/PEI/hemin/PEI/TPA (36.34±1.41 μWcm-2) is significantly higher than those of CNT/PEI/hemin/PEI (27.87±0.95 μWcm-2) and CNT/PEI/hemin/PEI/GA (25.57±1.32 μWcm-2), demonstrating again that the cathode using TPA has the best performance in HPRR.

Voltammetric Sensor Incorporated with Conductive Polymer, Tyrosinase, and Ionic Liquid Electrolyte for Bisphenol F (전도성고분자, 티로시나아제 효소 및 이온성 액체 전해질을 융합한 전압전류법 기반의 비스페놀F 검출 센서)

  • Sung Eun Ji;Sang Hyuk Lee;Hye Jin Lee
    • Applied Chemistry for Engineering
    • /
    • v.34 no.3
    • /
    • pp.258-263
    • /
    • 2023
  • In this study, conductive polymers and the enzyme tyrosinase (Tyr) were deposited on the surface of a screen printed carbon electrode (SPCE), which can be fabricated as a disposable sensor chip, and applied to the detection of bisphenol F (BPF), an endocrine disruptor with proven links to male diseases and thyroid disorders, using electrochemical methods. On the surface of the SPCE working electrode, which was negatively charged by oxygen plasma treatment, a positively charged conductive polymer, poly(diallyldimethyl ammonium chloride) (PDDA), a negatively charged polymer compound, poly(sodium 4-styrenesulfonate) (PSS), and another layer of PDDA were layered by electrostatic attraction in the order of PDDA, PSS, and finally PDDA. Then, a layer of Tyr, which was negatively charged due to pH adjustment to 7.0, was added to create a PDDA-PSS-PDDA-Tyr sensor for BPF. When the electrode sensor is exposed to a BPF solution, which is the substrate and target analyte, 4,4'-methylenebis(cyclohexa-3,5-diene-1,2-dione) is generated by an oxidation reaction with the Tyr enzyme on the electrode surface. The reduction process of the product at 0.1 V (vs. Ag/AgCl) generating 4,4'-methylenebis(benzene-1,2-diol) was measured using cyclic and differential pulse voltammetries, resulting in a change in the peak current with respect to the concentration of BPF. In addition, we compared the detection performance of BPF using an ionic liquid electrolyte as an alternative to phosphate-buffered saline, which has been used in many previous sensing studies. Furthermore, the selectivity of bisphenol S, which acts as an interfering substance with a similar structure to BPF, was investigated. Finally, we demonstrated the practical applicability of the sensor by applying it to analyze the concentration of BPF in real samples prepared in the laboratory.

State of Health and State of Charge Estimation of Li-ion Battery for Construction Equipment based on Dual Extended Kalman Filter (이중확장칼만필터(DEKF)를 기반한 건설장비용 리튬이온전지의 State of Charge(SOC) 및 State of Health(SOH) 추정)

  • Hong-Ryun Jung;Jun Ho Kim;Seung Woo Kim;Jong Hoon Kim;Eun Jin Kang;Jeong Woo Yun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.31 no.1
    • /
    • pp.16-22
    • /
    • 2024
  • Along with the high interest in electric vehicles and new renewable energy, there is a growing demand to apply lithium-ion batteries in the construction equipment industry. The capacity of heavy construction equipment that performs various tasks at construction sites is rapidly decreasing. Therefore, it is essential to accurately predict the state of batteries such as SOC (State of Charge) and SOH (State of Health). In this paper, the errors between actual electrochemical measurement data and estimated data were compared using the Dual Extended Kalman Filter (DEKF) algorithm that can estimate SOC and SOH at the same time. The prediction of battery charge state was analyzed by measuring OCV at SOC 5% intervals under 0.2C-rate conditions after the battery cell was fully charged, and the degradation state of the battery was predicted after 50 cycles of aging tests under various C-rate (0.2, 0.3, 0.5, 1.0, 1.5C rate) conditions. It was confirmed that the SOC and SOH estimation errors using DEKF tended to increase as the C-rate increased. It was confirmed that the SOC estimation using DEKF showed less than 6% at 0.2, 0.5, and 1C-rate. In addition, it was confirmed that the SOH estimation results showed good performance within the maximum error of 1.0% and 1.3% at 0.2 and 0.3C-rate, respectively. Also, it was confirmed that the estimation error also increased from 1.5% to 2% as the C-rate increased from 0.5 to 1.5C-rate. However, this result shows that all SOH estimation results using DEKF were excellent within about 2%.