Browse > Article
http://dx.doi.org/10.9713/kcer.2021.59.4.557

Characteristics of Sr0.92Y0.08Ti1-xVxO3-δ (x = 0.01, 0.04, 0.07, 0.12) Anode for Using H2S Containing Fuel in Solid Oxide Fuel Cells  

Jang, Geun Young (Department of Chemical Engineering, Chonnam National University)
Kim, Jun Ho (Department of Chemical Engineering, Chonnam National University)
Mo, Su In (Department of Chemical Engineering, Chonnam National University)
Park, Gwang Seon (Department of Chemical Engineering, Chonnam National University)
Yun, Jeong Woo (Department of Chemical Engineering, Chonnam National University)
Publication Information
Korean Chemical Engineering Research / v.59, no.4, 2021 , pp. 557-564 More about this Journal
Abstract
Sr0.92Y0.08Ti1-xVxO3-δ (SYTV) with perovskite structure was investigated as an alternative anode to utilize H2S containing fuels in solid oxide fuel cells. To improve the electrochemical performance of Sr0.92Y0.08TiO3-δ (SYT), vanadium(V) was substituted to titanium(Ti) at the B-site of the SYT perovskites. The SYTV synthesized by the Pechini method was chemically compatible with the YSZ electrolyte without additional by-products formation under the cell fabricating conditions. As increasing V substitution amounts, the oxygen vacancies increased, resulting to increasing ionic conductivity of the anode. The cell performance in pure H2 at 850 ℃ is 19.30 mW/cm2 and 34.87 mW/cm2 for a 1 mol.% and 7 mol.% of V substituted anodes, respectively. The cell performance using H2 fuel containing 1000 ppm of H2S at 850 ℃ was 23.37 mW/cm2 and 73.11 mW/cm2 for a 1 mol.% and 7 mol.% of V substituted anodes, respectively.
Keywords
Solid oxide fuel cells; Hydrogen sulfide; $Sr_{0.92}Y_{0.08}Ti_{1-x}V_xO_{3-{\delta}}$; Vanadium substitution; Alternative anode;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Yun, J. W., Ham, H. C., Kim, H. S., Song, S. A., Nam, S. W. and Yoon, S. P., "Effects of the Sm0.2Ce0.8O2-δ Modification of a Ni-based Anode on the H2S Tolerance for Intermediate Temperature Solid Oxide Fuel Cells," J. Electrochem. Soc., 160(2), F153-F161(2013).   DOI
2 Steele, B. C. H. and Heinzel, A., "Materials for Fuel-cell Technologies," Nature, 414, 345-352(2001).   DOI
3 Minh, N. Q., "Ceramic Fuel Cells," J. Am. Ceram. Soc., 76(3), 563-588(1993).   DOI
4 Singhal, S. C., "Solid Oxide Fuel Cells for Stationary, Mobile, and Military Applications," Solid State Ionics, 152, 405-410 (2002).   DOI
5 Niakolas, D. K., "Sulfur poisoning of Ni-based anodes for Solid Oxide Fuel Cells in H/C-based Fuels," Appl. Catal. A-Gen., 486, 123-142(2014).   DOI
6 Pujare, N. U., Semkow, K. W. and Sammells, A. F., "A Direct H2S/AIR Solid Oxide Fuel Cell," J. Electrochem. Soc., 134(10), 2639-2640(1987).   DOI
7 Liu, M., Wei, G., Luo, J., Sanger, A. R. and Chuang, K. T., "Use of Metal Sulfides as Anode Catalysts in H2S-Air SOFCs," J. Electrochem. Soc., 150(8), A1025(2003).   DOI
8 He, H., Gorte, R. J. and Vohs, J. M., "Highly Sulfur Tolerant Cu-ceria Anodes for SOFCs," Electrochem. Solid St., 8(6), A279(2005).   DOI
9 Abdalla, A. M., Hossain, S., Azad, A. T., Petra, P. M. I., Begum, F., Eriksson, S. G. and Azad, A. K., "Nanomaterials for Solid Oxide Fuel Cells: a Review," Renew. Sust. Energ. Rev., 82, 353-368(2018).   DOI
10 Kwak, B. H., Park, J., Yoon, H., Kim, H. H., Kim, L. and Chung, J. S., "Additive Effect of Ce, Mo and K to Nickel-cobalt Aluminate Supported Solid Oxide Fuel Cell for Direct Internal Reforming of Methane," Korean J. of Chem. Eng., 31(1), 29-36 (2014).   DOI
11 Yun, J. W., Yoon, S. P., Han, J., Park, S., Kim, H. S. and Nam, S. W., "Ceria Coatings Effect on H2S Poisoning of Ni/YSZ Anodes for Solid Oxide Fuel Cells," J. Electrochem. Soc., 157(12), B1825-B1830(2010).   DOI
12 Pujare, N. U., Tsai, K. J. and Sammuells, A. F., "An Electrochemical Claus Process for Sulfur Recovery," J. Electrochem. Soc., 136(12), 3662-3678(1989).   DOI
13 Yates, C. and Winnick, J., "Anode Materials for a Hydrogen Sulfide Solid Oxide Fuel Cell," J. Electrochem. Soc., 146(8), 2841(1999).   DOI
14 Wei, G. L., Luo, J. L., Sanger, A. R. and Chuang, K. T., "High-performance Anode for H2S Air SOFCs," J. Electrochem. Soc., 151(2), A232-A237(2004).   DOI
15 Devianto, H., Yoon, S. P., Nam, S. W., Han, J. and Lim, T. H., "The Effect of a Ceria Coating on the H2S Tolerance of a Molten Carbonate Fuel Cell," J. Power Sources, 159(2), 1147-1152(2006).   DOI
16 Li, Y., Wang, Z., Li, J., Zhu, X., Zhang, Y., Huang, X., Zhou, Y. Zhu, L. and Lu, Z., "Sulfur poisoning and Attempt of Oxidative Regeneration of La0.75Sr0.25Cr0.5Mn0.5O3-δ Anode for Solid Oxide Fuel Cell," J. Alloy. Compd., 698, 794-799(2017).   DOI
17 Marina, O. A., Canfield, N. L. and Stevenson, J. W., "Thermal, Electrical, and Electrocatalytical Properties of Lanthanum-doped Strontium Titanate," Solid State Ionics, 149, 21-28(2002).   DOI
18 Wang, S., Liu, M. and Winnick, J., "Stabilities and Electrical Conductivities of Electrode Materials for Use in H2S-containing Gases," J. Solid State Electr., 5(3), 188-195(2001).   DOI
19 Ji, P., Gao, X., Du, X., Zheng, C., Luo, Z. and Cen, K., "Relationship Between the Molecular Structure of V2O5/TiO2 Catalysts and the Reactivity of SO2 Oxidation," Catal. Sci. Technol., 6, 1187-1194(2016).   DOI
20 Zha, S., Tsang, P., Cheng, Z. and Liu, M., "Electrical Properties and Sulfur Tolerance of La0.75Sr0.25Cr1-xMnxO3 Under Anodic Conditions," J. Solid State Chem., 178(6), 1844-1850(2005).   DOI
21 Popa, M. and Kakihana, M., "Synthesis of Lanthanum Cobaltite (LaCoO3) by the Polymerizable Complex Route," Solid State Ionics, 151(1-4), 251-257(2002).   DOI
22 Kim, G. S., Lee, B. Y., Accardo, G., Ham, H. C., Moon, J. and Yoon, S. P., "Improved Catalytic Activity Under Internal Reforming Solid Oxide Fuel Cell Over New Rhodium-doped Perovskite Catalyst," J. Power Sources, 423, 305-315(2019).   DOI
23 Cheng, Z., "Investigations Into the Interactions Between Sulfur and Anodes for Solid Oxide Fuel Cells (Doctoral dissertation, Georgia Institute of Technology)," (2008).
24 Park, E. K., Lee, S. and Yun, J. W., "Characteristics of Sr0.92Y0.08Ti1-yNiyO3-δ Anode and Ni-infiltrated Sr0.92Y0.08TiO3-δ Anode Using CH4 Fuel in Solid Oxide Fuel Cells," Appl. Surf. Sci., 429, 171-179(2018).   DOI
25 Cheng, Z., Zha, S., Aguilar, L. and Liu, M., "Chemical, Electrical, and Thermal Properties of Strontium Doped Lanthanum Vanadate," Solid State Ionics, 176(23-24), 1921-1928(2005).   DOI
26 Izaki, M. and Omi, T., "Electrolyte Optimization for Cathodic Growth of Zinc Oxide Films," J. Electrochem. Soc., 143(3), L53-L55(1996).   DOI
27 Yentekakis, I. V. and Vayenas, C. G., "Chemical Cogeneration in Solid Electrolyte Cells: The Oxidation of H2S to SO2", J. Electrochem. Soc., 136(4), 996-1002(1989).   DOI
28 Bantawal, H., Shenoy, U. S. and Bhat, D. K., "Vanadium-doped SrTiO3 Nanocubes: Insight Into Role of Vanadium in Improving the Photocatalytic Activity," Appl. Surf. Sci., 513, 145858(2020).   DOI
29 Kim, K. I., Kim, H. S., Kim, H. S. and Yun, J. W., "H2S Tolerance Effects of Ce0.8Sm0.2O2-δ Modification on Sr0.92Y0.08Ti1-xNixO3-δ Anode in Solid Oxide Fuel Cells," J. Ind. Eng. Chem., 68, 187-195(2018).   DOI
30 Kim, J. H. and Yun, J. W., "Sulfur Tolerance Effects on Sr0.92Y0.08Ti0.5Fe0.5O3-δ as an Alternative Anode in Solid Oxide Fuel Cells," J. Electrochem. Sci. Tech., 9(2), 133-140(2018).   DOI
31 Bantawal, H., Shenoy, U. S. and Bhat, D. K., "Vanadium-doped SrTiO3 Nanocubes: Insight Into Role of Vanadium in Improving the Photocatalytic Activity," Appl. Surf. Sci., 513, 145858(2020).   DOI