Browse > Article

Electrochemical Performance as the Positive Electrode of Polyaniline and Polypyrrole Hollow Sphere with Different Shell Thickness  

Yun, Su-Ryeon (Department of Chemistry, University of Ulsan)
Hwang, Seung-Gi (Department of Chemistry, University of Ulsan)
Cho, Sung-Woo (Department of Chemistry, University of Ulsan)
Kang, Yongku (Korea Research Institute of Chemical Technology)
Ryu, Kawng-Sun (Department of Chemistry, University of Ulsan)
Publication Information
Applied Chemistry for Engineering / v.23, no.2, 2012 , pp. 131-137 More about this Journal
Abstract
Polyaniline (PANI) and polypyrrole (Ppy) hollow sphere structures with controlled shell thicknesses can be easily synthesized than those of using a layer-by-layer method for cathode active material of lithium-ion batteries. Polystyrene (PS) core was synthesized by emulsion polymerization using an anion surfactant. The shell thicknesses of PANI and Ppy were controlled by amounts of aniline and pyrrole monomers. PS was removed by an organic solution. This structure increased in contact with an electrolyte and a specific capacity in lithium-ion batteries. But polymers have disadvantages such as the difficult control of molecular weights and low densities. These disadvantages were completed by controlled shell thicknesses. The amount of aniline monomer increased from 1.2, 2.4, 3.6, 4.8 to 6.0 mL, and the shell thicknesses were 30.2, 38.0, 42.2, 48.2, and 52.4 nm, respectively. And the amount of pyrrole monomer was 0.6, 1.2, 2.4 and 3.6 mL, the shell thicknesses were 16.0, 22.0, 27.0 and 34.0 nm, respectively. In the cathode materials with controlled shell thicknesses, shell thicknesses of the PANI hollow spheres were 30.2, 42.2, and 52.4 nm, and discharge specific capacities of after 10 cycle were ~18, ~29, and ~62 mAh/g, respectively. The shell thicknesses of the Ppy hollow spheres were 16.0, 22.0, 27.0 and 34.0 nm, and discharge specific capacities of after 15 cycle were ~15, ~36, ~56, and ~77 mAh/g, respectively. Thus, shell thicknesses of PANI and Ppy increased, the specific capacities increased.
Keywords
polyaniline; polypyrrole; hollow sphere; cathode; lithium ion battery;
Citations & Related Records
연도 인용수 순위
  • Reference
1 P. J. Nigrey, D. Fr. MacInnes, D. P. Nairns, and A. J. MacDiarmid, J. Electrochem. Soc., 128 1651 (1981).   DOI   ScienceOn
2 J. Chen, A. K. Burrell, G. E. Collis, D. L. Officer, G. F. Swiegers, C. O. Too, and G. G. Wallace, Electrochim.Acta., 47, 2715 (2002).   DOI   ScienceOn
3 J. Chen, C. O. Too, G. G. Wallace, G. F. Swiegers, B. W. Skelton, and A. H. White, Electrochim.Acta., 47, 4227 (2002).   DOI   ScienceOn
4 J. Chen, J. Huang, G. F. Swiegers, C. O. Too, and G. G. Wallace, Chem. Commun., 3, 308 (2004).
5 A. G. MacDiarmid, J. C. Chiang, M. Halpern, W. S. Huang, S. L. Mu, N. L. D. Somasiri, W. Wu, and S. I. Yaniger, Mol. Cryst. Liq. Cryst., 121, 173 (1985).   DOI   ScienceOn
6 A. Angeli and L. Alessandri, Gazz. Chim, Ital., 46, 283 (1916).
7 S. Rapi, V. Bochi, and G. P. Gardini, Synth. Met., 32, 351 (1989).   DOI   ScienceOn
8 A. Dall' 'olio, Y. Dascola, and V. Varaca, Compfes Rendus, 267, 433 (1968).
9 A. F. Diaz, K. K. Kanazawa, and G. P. Gardini, J. Chem. Soc., 635 (1979).
10 A. J. Nelson, S. Glenis, and A. J. Frank, J. Vac. Sci. Technol., 6, 954 (1987).
11 D. M. Collard and M. S. Stoakes, Chem. Mater., 6, 850 (1985).
12 F. Caruso, R. A. Caruso, and H. M wald, Science, 282, 1111 (1998).   DOI   ScienceOn
13 X. W. Lou, L. A. Archer, and Z. Yang, Adv. Mater., 20, 3987 (2008).   DOI   ScienceOn