DOI QR코드

DOI QR Code

Characteristics of Sr0.92Y0.08Ti1-xVxO3-δ (x = 0.01, 0.04, 0.07, 0.12) Anode for Using H2S Containing Fuel in Solid Oxide Fuel Cells

H2S를 포함하는 연료를 사용하기 위한 고체산화물 연료전지용 Sr0.92Y0.08Ti1-xVxO3-δ 연료극 특성

  • Jang, Geun Young (Department of Chemical Engineering, Chonnam National University) ;
  • Kim, Jun Ho (Department of Chemical Engineering, Chonnam National University) ;
  • Mo, Su In (Department of Chemical Engineering, Chonnam National University) ;
  • Park, Gwang Seon (Department of Chemical Engineering, Chonnam National University) ;
  • Yun, Jeong Woo (Department of Chemical Engineering, Chonnam National University)
  • 장근영 (전남대학교 화학공학과) ;
  • 김준호 (전남대학교 화학공학과) ;
  • 모수인 (전남대학교 화학공학과) ;
  • 박광선 (전남대학교 화학공학과) ;
  • 윤정우 (전남대학교 화학공학과)
  • Received : 2021.04.29
  • Accepted : 2021.07.01
  • Published : 2021.11.01

Abstract

Sr0.92Y0.08Ti1-xVxO3-δ (SYTV) with perovskite structure was investigated as an alternative anode to utilize H2S containing fuels in solid oxide fuel cells. To improve the electrochemical performance of Sr0.92Y0.08TiO3-δ (SYT), vanadium(V) was substituted to titanium(Ti) at the B-site of the SYT perovskites. The SYTV synthesized by the Pechini method was chemically compatible with the YSZ electrolyte without additional by-products formation under the cell fabricating conditions. As increasing V substitution amounts, the oxygen vacancies increased, resulting to increasing ionic conductivity of the anode. The cell performance in pure H2 at 850 ℃ is 19.30 mW/cm2 and 34.87 mW/cm2 for a 1 mol.% and 7 mol.% of V substituted anodes, respectively. The cell performance using H2 fuel containing 1000 ppm of H2S at 850 ℃ was 23.37 mW/cm2 and 73.11 mW/cm2 for a 1 mol.% and 7 mol.% of V substituted anodes, respectively.

페로브스카이트 구조를 갖는 Sr0.92Y0.08Ti1-xVxO3-δ (SYTV)는 고체산화물 연료 전지(Solid oxide fuel cell, SOFC)에서 H2S를 포함하는 연료를 사용하기 위한 대체 연료극으로 연구되었다. Sr0.92Y0.08TiO3-δ (SYT)의 전기화학적 성능을 향상시키기 위해 페로브스카이트의 B-사이트에 위치한 티타늄을 바나듐으로 치환하였다. 페치니법을 통해 합성된 SYTV는 작동 온도 조건에서 추가적인 부산물의 형성 없이 YSZ(yttria-stabilized zirconia) 전해질과 화학적으로 안정했다. 바나듐의 치환량이 증가함에 따라 산소 공공 결함(Oxygen vacancy)이 증가하였으며, 생성된 산소 공공 결함으로 인해 연료극의 이온 전도도가 증가했다. 전지 성능은 850 ℃ 순수한 H2 연료 조건에서 바나듐 치환 정도에 따라 1 mol.%의 바나듐이 치환된 경우 19.30 mW/cm2 이고 7 mol.%의 바나듐이 치환된 경우 34.87 mW/cm2이다. 1000 ppm의 H2S를 포함하는 H2 연료조건에서 cell의 최대 전력밀도는 1 mol.%의 경우 22.34 mW/cm2이고 7 mol.%의 경우 73.11 mW/cm2로 증가하였다.

Keywords

Acknowledgement

이 연구는 2021년도 산업통상자원부 및 산업기술평가관리원(KEIT) 연구비 지원에 의한 연구임('20012555').

References

  1. Singhal, S. C., "Solid Oxide Fuel Cells for Stationary, Mobile, and Military Applications," Solid State Ionics, 152, 405-410 (2002). https://doi.org/10.1016/S0167-2738(02)00349-1
  2. Steele, B. C. H. and Heinzel, A., "Materials for Fuel-cell Technologies," Nature, 414, 345-352(2001). https://doi.org/10.1038/35104620
  3. Minh, N. Q., "Ceramic Fuel Cells," J. Am. Ceram. Soc., 76(3), 563-588(1993). https://doi.org/10.1111/j.1151-2916.1993.tb03645.x
  4. Niakolas, D. K., "Sulfur poisoning of Ni-based anodes for Solid Oxide Fuel Cells in H/C-based Fuels," Appl. Catal. A-Gen., 486, 123-142(2014). https://doi.org/10.1016/j.apcata.2014.08.015
  5. Kwak, B. H., Park, J., Yoon, H., Kim, H. H., Kim, L. and Chung, J. S., "Additive Effect of Ce, Mo and K to Nickel-cobalt Aluminate Supported Solid Oxide Fuel Cell for Direct Internal Reforming of Methane," Korean J. of Chem. Eng., 31(1), 29-36 (2014). https://doi.org/10.1007/s11814-013-0185-6
  6. Yun, J. W., Yoon, S. P., Han, J., Park, S., Kim, H. S. and Nam, S. W., "Ceria Coatings Effect on H2S Poisoning of Ni/YSZ Anodes for Solid Oxide Fuel Cells," J. Electrochem. Soc., 157(12), B1825-B1830(2010). https://doi.org/10.1149/1.3499215
  7. Pujare, N. U., Semkow, K. W. and Sammells, A. F., "A Direct H2S/AIR Solid Oxide Fuel Cell," J. Electrochem. Soc., 134(10), 2639-2640(1987). https://doi.org/10.1149/1.2100262
  8. Pujare, N. U., Tsai, K. J. and Sammuells, A. F., "An Electrochemical Claus Process for Sulfur Recovery," J. Electrochem. Soc., 136(12), 3662-3678(1989). https://doi.org/10.1149/1.2096528
  9. Yates, C. and Winnick, J., "Anode Materials for a Hydrogen Sulfide Solid Oxide Fuel Cell," J. Electrochem. Soc., 146(8), 2841(1999). https://doi.org/10.1149/1.1392017
  10. Liu, M., Wei, G., Luo, J., Sanger, A. R. and Chuang, K. T., "Use of Metal Sulfides as Anode Catalysts in H2S-Air SOFCs," J. Electrochem. Soc., 150(8), A1025(2003). https://doi.org/10.1149/1.1583715
  11. Wei, G. L., Luo, J. L., Sanger, A. R. and Chuang, K. T., "High-performance Anode for H2S Air SOFCs," J. Electrochem. Soc., 151(2), A232-A237(2004). https://doi.org/10.1149/1.1636177
  12. Devianto, H., Yoon, S. P., Nam, S. W., Han, J. and Lim, T. H., "The Effect of a Ceria Coating on the H2S Tolerance of a Molten Carbonate Fuel Cell," J. Power Sources, 159(2), 1147-1152(2006). https://doi.org/10.1016/j.jpowsour.2005.11.092
  13. He, H., Gorte, R. J. and Vohs, J. M., "Highly Sulfur Tolerant Cu-ceria Anodes for SOFCs," Electrochem. Solid St., 8(6), A279(2005). https://doi.org/10.1149/1.1896469
  14. Zha, S., Tsang, P., Cheng, Z. and Liu, M., "Electrical Properties and Sulfur Tolerance of La0.75Sr0.25Cr1-xMnxO3 Under Anodic Conditions," J. Solid State Chem., 178(6), 1844-1850(2005). https://doi.org/10.1016/j.jssc.2005.03.027
  15. Li, Y., Wang, Z., Li, J., Zhu, X., Zhang, Y., Huang, X., Zhou, Y. Zhu, L. and Lu, Z., "Sulfur poisoning and Attempt of Oxidative Regeneration of La0.75Sr0.25Cr0.5Mn0.5O3-δ Anode for Solid Oxide Fuel Cell," J. Alloy. Compd., 698, 794-799(2017). https://doi.org/10.1016/j.jallcom.2016.12.313
  16. Abdalla, A. M., Hossain, S., Azad, A. T., Petra, P. M. I., Begum, F., Eriksson, S. G. and Azad, A. K., "Nanomaterials for Solid Oxide Fuel Cells: a Review," Renew. Sust. Energ. Rev., 82, 353-368(2018). https://doi.org/10.1016/j.rser.2017.09.046
  17. Wang, S., Liu, M. and Winnick, J., "Stabilities and Electrical Conductivities of Electrode Materials for Use in H2S-containing Gases," J. Solid State Electr., 5(3), 188-195(2001). https://doi.org/10.1007/s100080000142
  18. Marina, O. A., Canfield, N. L. and Stevenson, J. W., "Thermal, Electrical, and Electrocatalytical Properties of Lanthanum-doped Strontium Titanate," Solid State Ionics, 149, 21-28(2002). https://doi.org/10.1016/S0167-2738(02)00140-6
  19. Yun, J. W., Ham, H. C., Kim, H. S., Song, S. A., Nam, S. W. and Yoon, S. P., "Effects of the Sm0.2Ce0.8O2-δ Modification of a Ni-based Anode on the H2S Tolerance for Intermediate Temperature Solid Oxide Fuel Cells," J. Electrochem. Soc., 160(2), F153-F161(2013). https://doi.org/10.1149/2.071302jes
  20. Kim, K. I., Kim, H. S., Kim, H. S. and Yun, J. W., "H2S Tolerance Effects of Ce0.8Sm0.2O2-δ Modification on Sr0.92Y0.08Ti1-xNixO3-δ Anode in Solid Oxide Fuel Cells," J. Ind. Eng. Chem., 68, 187-195(2018). https://doi.org/10.1016/j.jiec.2018.07.045
  21. Kim, J. H. and Yun, J. W., "Sulfur Tolerance Effects on Sr0.92Y0.08Ti0.5Fe0.5O3-δ as an Alternative Anode in Solid Oxide Fuel Cells," J. Electrochem. Sci. Tech., 9(2), 133-140(2018). https://doi.org/10.5229/JECST.2018.9.2.133
  22. Park, E. K., Lee, S. and Yun, J. W., "Characteristics of Sr0.92Y0.08Ti1-yNiyO3-δ Anode and Ni-infiltrated Sr0.92Y0.08TiO3-δ Anode Using CH4 Fuel in Solid Oxide Fuel Cells," Appl. Surf. Sci., 429, 171-179(2018). https://doi.org/10.1016/j.apsusc.2017.07.284
  23. Popa, M. and Kakihana, M., "Synthesis of Lanthanum Cobaltite (LaCoO3) by the Polymerizable Complex Route," Solid State Ionics, 151(1-4), 251-257(2002). https://doi.org/10.1016/S0167-2738(02)00719-1
  24. Bantawal, H., Shenoy, U. S. and Bhat, D. K., "Vanadium-doped SrTiO3 Nanocubes: Insight Into Role of Vanadium in Improving the Photocatalytic Activity," Appl. Surf. Sci., 513, 145858(2020). https://doi.org/10.1016/j.apsusc.2020.145858
  25. Ji, P., Gao, X., Du, X., Zheng, C., Luo, Z. and Cen, K., "Relationship Between the Molecular Structure of V2O5/TiO2 Catalysts and the Reactivity of SO2 Oxidation," Catal. Sci. Technol., 6, 1187-1194(2016). https://doi.org/10.1039/C5CY00867K
  26. Kim, G. S., Lee, B. Y., Accardo, G., Ham, H. C., Moon, J. and Yoon, S. P., "Improved Catalytic Activity Under Internal Reforming Solid Oxide Fuel Cell Over New Rhodium-doped Perovskite Catalyst," J. Power Sources, 423, 305-315(2019). https://doi.org/10.1016/j.jpowsour.2019.03.082
  27. Bantawal, H., Shenoy, U. S. and Bhat, D. K., "Vanadium-doped SrTiO3 Nanocubes: Insight Into Role of Vanadium in Improving the Photocatalytic Activity," Appl. Surf. Sci., 513, 145858(2020). https://doi.org/10.1016/j.apsusc.2020.145858
  28. Cheng, Z., "Investigations Into the Interactions Between Sulfur and Anodes for Solid Oxide Fuel Cells (Doctoral dissertation, Georgia Institute of Technology)," (2008).
  29. Cheng, Z., Zha, S., Aguilar, L. and Liu, M., "Chemical, Electrical, and Thermal Properties of Strontium Doped Lanthanum Vanadate," Solid State Ionics, 176(23-24), 1921-1928(2005). https://doi.org/10.1016/j.ssi.2005.05.009
  30. Izaki, M. and Omi, T., "Electrolyte Optimization for Cathodic Growth of Zinc Oxide Films," J. Electrochem. Soc., 143(3), L53-L55(1996). https://doi.org/10.1149/1.1836529
  31. Yentekakis, I. V. and Vayenas, C. G., "Chemical Cogeneration in Solid Electrolyte Cells: The Oxidation of H2S to SO2", J. Electrochem. Soc., 136(4), 996-1002(1989). https://doi.org/10.1149/1.2096899