DOI QR코드

DOI QR Code

A Study on the Adsorption and Desorption Characteristics of Metal-Impregnated Activated Carbons with Metal Precursors for the Regeneration and Concentration of Ammonia

암모니아의 재생 및 농축을 위한 금속 전구체에 따른 금속 첨착 활성탄의 흡착 및 탈착 특성에 관한 연구

  • Cho, Gwang Hee (Graduate School of Energy Science and Technology, Chungnam National University) ;
  • Park, Ji Hye (Department of Chemical Engineering Education, Chungnam National University) ;
  • Rasheed, Haroon Ur (Graduate School of Energy Science and Technology, Chungnam National University) ;
  • Yoon, Hyung Chul (Korea Institute of Energy Research) ;
  • Yi, Kwang Bok (Department of Chemical Engineering Education, Chungnam National University)
  • 조광희 (충남대학교 에너지과학기술대학원) ;
  • 박지혜 (충남대학교 화학공학교육과) ;
  • ;
  • 윤형철 (한국에너지기술연구원) ;
  • 이광복 (충남대학교 화학공학교육과)
  • Received : 2020.06.05
  • Accepted : 2020.06.22
  • Published : 2020.06.30

Abstract

Metal-impregnated activated carbons were prepared via ultrasonic-assisted impregnation method for regeneration and low ammonia concentration. Magnesium and copper were selected as metals, while chloride (Cl-) and nitrate (NO3-) precursors were used to impregnate the surface of activated carbon. The physical and chemical properties of the prepared adsorbents were characterized by TGA, BET, and NH3-TPD. The ammonia breakthrough test was carried out using a fixed bed and flowing ammonia gas (1000 mg L-1 NH3, balanced N2) at 100 mL min-1, under conditions of temperature swing adsorption (TSA) and pressure swing adsorption (PSA, 0.3, 0.5, 0.7, 0.9 Mpa). The adsorption and desorption performance of ammonia were in the order of AC-Mg(Cl) > AC-Cu(Cl) > AC-Mg(N) > AC-Cu(N) > AC through NH3-TPD and TSA and PSA processes. AC-Mg(Cl) using MgCl2 showed the average adsorption amount of 2.138 mmol/g at TSA process. Also, AC-Mg(Cl) showed the highest initial adsorption amount of 3.848 mmol/g at PSA 0.9 Mpa. When metal impregnated the surface of the activated carbon, it was confirmed that not only physical adsorption, but also chemical adsorption increased, making enhancement in adsorption and desorption performances possible. Also, the prepared adsorbents showed stable adsorption and desorption performances despite repeated processes, confirming their applicability in the TSA and PSA processes.

저농도 암모니아의 재생 및 농축을 위하여 초음파 함침법으로 금속 첨착 활성탄을 제조하였다. 금속으로는 마그네슘과 구리를 선정하였고, 염화물(Cl-)과 질산염(NO3-) 전구체를 사용하여 활성탄 표면에 첨착하였다. 흡착제의 물리 및 화학적 특성은 TGA, BET 그리고 NH3-TPD를 통해 분석되었다. 암모니아 파과실험은 고정층 반응기를 사용하여 암모니아(1000 mg L-1 NH3, balanced N2)를 100 mL min-1으로 주입하였으며, 온도변동 흡착법(TSA)과 압력변동 흡착법(PSA, 0.3, 0.5, 0.7, 0.9 Mpa)에서 수행하였다. 암모니아의 흡착 및 탈착 성능은 NH3-TPD와 TSA 및 PSA 공정에서 AC-Mg(Cl) > AC-Cu(Cl) > AC-Mg(N) > AC-Cu(N) > AC 순으로 나타났다. 그 중 MgCl2를 사용한 AC-Mg(Cl)은 TSA에서 평균 흡착량 2.138 mmol g-1을 나타내었다. 또한 PSA 0.9 Mpa에서 3.848 mmol g-1로 가장 높은 초기 흡착량을 나타내었다. 활성탄 표면에 금속이 첨착되면 물리흡착뿐만 아니라 화학흡착이 수반되어 흡착 및 탈착 성능이 증가하는 것을 확인하였다. 또한 흡착제는 반복적인 공정에도 안정적인 흡착 및 탈착 성능을 나타내어 TSA와 PSA 공정에서의 적용 가능성을 확인하였다.

Keywords

References

  1. Shipman, M. A., and Symes, M. D., "Recent Progress Towards the Electrosynthesis of Ammonia from Sustainable Resources," Catal. Today, 286, 57-68 (2017). https://doi.org/10.1016/j.cattod.2016.05.008
  2. Giddey, S., Badwal, S. P. S., and Kulkarni, A., "Review of Electrochemical Ammonia Production Technologies and Materials," Int. J. Hydrogen Energy, 38(34), 14576-14594 (2013). https://doi.org/10.1016/j.ijhydene.2013.09.054
  3. Avery, W. H., "A Role for Ammonia in the Hydrogen Economy," Int. J. Hydrogen Energy, 13(12), 761-773 (1988). https://doi.org/10.1016/0360-3199(88)90037-7
  4. Lan, R., Irvine, J. T., and Tao, S., "Ammonia and Related Chemicals as Potential Indirect Hydrogen Storage Materials," Int. J. Hydrogen Energy, 37(2), 1482-1494 (2012). https://doi.org/10.1016/j.ijhydene.2011.10.004
  5. Kozuch, S., and Shaik, S., "Kinetic-Quantum Chemical Model for Catalytic Cycles: the Haber-Bosch Process and the Effect of Reagent Concentration," J. Phys. Chem. A, 112(26), 6032-6041 (2008). https://doi.org/10.1021/jp8004772
  6. Erisman, J. W., Sutton, M. A., Galloway, J., Klimont, Z., and Winiwarter, W., "How a Century of Ammonia Synthesis Changed the World," Nat. Geosci., 1(10), 636-639 (2008). https://doi.org/10.1038/ngeo325
  7. Kim, K., Lee, S. J., Kim, D. Y., Yoo, C. Y., Choi, J. W., Kim, J. N., and Han, J. I., "Electrochemical Synthesis of Ammonia from Water and Nitrogen: A Lithium-Mediated Approach Using Lithium-Ion Conducting Glass Ceramics," ChemSusChem, 11(1), 120-124 (2018). https://doi.org/10.1002/cssc.201701975
  8. Chen, S., Perathoner, S., Ampelli, C., Mebrahtu, C., Su, D., and Centi, G., "Electrocatalytic Synthesis of Ammonia at Room Temperature and Atmospheric Pressure from Water and Nitrogen on a Carbon-Nanotube-Based Electrocatalyst," Angew. Chem. Int. Ed. Engl., 56(10), 2699-2703 (2017). https://doi.org/10.1002/anie.201609533
  9. Jeong, E. Y., Yoo, C. Y., Jung, C. H., Park, J. H., Park, Y. C., Kim, J. N., and Yoon, H. C., "Electrochemical Ammonia Synthesis Mediated by Titanocene Dichloride in Aqueous Electrolytes under Ambient Conditions," ACS Sustain. Chem. Eng., 5(11), 9662-9666 (2017). https://doi.org/10.1021/acssuschemeng.7b02908
  10. Kordali, V., Kyriacou, G., and Lambrou, C., "Electrochemical Synthesis of Ammonia at Atmospheric Pressure and Low Temperature in a Solid Polymer Electrolyte Cell," Chem. Commun., (17), 1673-1674 (2000).
  11. Yun, D. S., Joo, J. H., Yu, J. H., Yoon, H. C., Kim, J. N., and Yoo, C. Y., "Electrochemical Ammonia Synthesis from Steam and Nitrogen using Proton Conducting Yttrium Doped Barium Zirconate Electrolyte with Silver, Platinum, and Lanthanum Strontium Cobalt Ferrite Electrocatalyst," J. Power Sources, 284, 245-251 (2015). https://doi.org/10.1016/j.jpowsour.2015.03.002
  12. Kyriakou, V., Garagounis, I., Vasileiou, E., Vourros, A., and Stoukides, M., "Progress in the Electrochemical Synthesis of Ammonia," Catal. Today, 286, 2-13 (2017). https://doi.org/10.1016/j.cattod.2016.06.014
  13. Garagounis, I., Kyriakou, V., Skodra, A., Vasileiou, E., and Stoukides, M., "Electrochemical Synthesis of Ammonia in Solid Electrolyte Cells," Front. Energy Res., 2(1), 1-10 (2014).
  14. Amar, I. A., Lan, R., Petit, C. T., and Tao, S., "Solid-State Electrochemical Synthesis of Ammonia: a Review," J. Solid State Electrochem., 15(9), 1845 (2011). https://doi.org/10.1007/s10008-011-1376-x
  15. Rieth, A. J., and Dinca, M., "Controlled Gas Uptake in Metal-Organic Frameworks with Record Ammonia Sorption," J. Am. Chem. Soc., 140(9), 3461-3466 (2018). https://doi.org/10.1021/jacs.8b00313
  16. Bandosz, T. J., and Petit, C., "On the Reactive Adsorption of Ammonia on Activated Carbons Modified by Impregnation with Inorganic Compounds," J. Colloid Interface Sci., 338(2), 329-345 (2009). https://doi.org/10.1016/j.jcis.2009.06.039
  17. Oktavitri, N. I., Purnobasuki, H., Kuncoro, E. P., and Purnamasari, I., "Ammonia Removal Using Coconut Shell Based Adsorbent: Effect of Carbonization Duration and Contact Time," IPTEK Journal of Proceedings Series, 3(4), 26-32 (2017).
  18. Goncalves, M., Sanchez-Garcia, L., Oliveira Jardim, E. D., Silvestre-Albero, J., and Rodriguez-Reinoso, F., "Ammonia Removal using Activated Carbons: Effect of the Surface Chemistry in Dry and Moist Conditions," Environ. Sci. Technol., 45(24), 10605-10610 (2011). https://doi.org/10.1021/es203093v
  19. Huang, C. C., Li, H. S., and Chen, C. H., "Effect of Surface Acidic Oxides of Activated Carbon on Adsorption of Ammonia," J. Hazard. Mater., 159(2-3), 523-527 (2008). https://doi.org/10.1016/j.jhazmat.2008.02.051
  20. Khabzina, Y., and Farrusseng, D., "Unravelling Ammonia Adsorption Mechanisms of Adsorbents in Humid Conditions," Microporous Mesoporous Mater., 265, 143-148 (2018). https://doi.org/10.1016/j.micromeso.2018.02.011
  21. Somy, A., Mehrnia, M. R., Amrei, H. D., Ghanizadeh, A., and Safari, M., "Adsorption of Carbon Dioxide using Impregnated Activated Carbon Promoted by Zinc," Int. J. Greenhouse Gas Control, 3(3), 249-254 (2009). https://doi.org/10.1016/j.ijggc.2008.10.003
  22. Huang, C. C., Chen, H. M., Chen, C. H., and Huang, J. C., "Effect of Surface Oxides on Hydrogen Storage of Activated Carbon," Sep. Purif. Technol., 70(3), 291-295 (2010). https://doi.org/10.1016/j.seppur.2009.10.009
  23. Park, J. H., Hwang, R. H., Yoon, H. C., and Yi, K. B., "Effects of Metal Loading on Activated Carbon on Its Adsorption and Desorption Characteristics," J. Ind. Eng. Chem., 74, 199-207 (2019). https://doi.org/10.1016/j.jiec.2019.03.004
  24. Park, J. H., Rasheed, H., Cho, K. H., Yoon, H. C., and Yi, K. B., "Effects of Magnesium Loading on Ammonia Capacity and Thermal Stability of Activated Carbons," Korean J. Chem. Eng., 37(6), 1029-1035 (2020). https://doi.org/10.1007/s11814-020-0508-3
  25. Mehdipour, M., and Fatemi, S., "Modeling of a PSA-TSA Process for Separation of $CH_4$ from $C_2$ Products of OCM Reaction," Sep. Sci. Technol., 47(8), 1199-1212 (2012). https://doi.org/10.1080/01496395.2011.644019
  26. Smith, A. R., and Klosek, J., "A Review of Air Separation Technologies and Their Integration with Energy Conversion Processes," Fuel Process. Technol., 70(2), 115-134 (2001). https://doi.org/10.1016/S0378-3820(01)00131-X
  27. Loy, Y. Y., Lee, X. L., and Rangaiah, G. P., "Bioethanol Recovery and Purification using Extractive Dividing-Wall Column and Pressure Swing Adsorption: An Economic Comparison after Heat Integration and Optimization," Sep. Purif. Technol., 149, 413-427 (2015). https://doi.org/10.1016/j.seppur.2015.06.007
  28. Rege, S. U., Yang, R. T., Qian, K., and Buzanowski, M. A., "Air-Prepurification by Pressure Swing Adsorption using Single/Layered Beds," Chem. Eng. Sci., 56(8), 2745-2759 (2001). https://doi.org/10.1016/S0009-2509(00)00531-5
  29. Ho, M. T., Allinson, G. W., and Wiley, D. E., "Reducing the Cost of $CO_2$ Capture from Flue Gases using Pressure Swing Adsorption," Ind. Eng. Chem. Res., 47(14), 4883-4890 (2008). https://doi.org/10.1021/ie070831e
  30. Al Amer, A. M., Laoui, T., Abbas, A., Al-Aqeeli, N., Patel, F., Khraisheh, M., Atieh, M. A., and Hilal, N., "Fabrication and Antifouling Behaviour of a Carbon Nanotube Membrane," Mater. Des., 89, 549-558 (2016). https://doi.org/10.1016/j.matdes.2015.10.018
  31. Park, J. H., Baek, J. H., Jo, G. H., Rasheed, H. U., and YI, K. B., "Catalytic Characteristic of Water-Treated Cu/ZnO/MgO/$Al_2O_3$ Catalyst for LT-WGS Reaction," Trans. Korean Hydrog. New Energy Soc., 30(2), 95-102 (2019). https://doi.org/10.7316/KHNES.2019.30.2.95
  32. Jeong, J. M., Park, J. H., Baek, J. H., Hwang, R. H., Jeon, S. G., and Yi, K. B., "Effect of Acid Treatment of Fe-BEA Zeolite on Catalytic $N_2O$ Conversion," Korean J. Chem. Eng., 34(1), 81-86 (2017). https://doi.org/10.1007/s11814-016-0239-7
  33. Wu, Z., Jin, R., Liu, Y., and Wang, H., "Ceria Modified $MnO_x/TiO_2$ as a Superior Catalyst for NO Reduction with NH3 at Low-Temperature," Catal. Commun., 9(13), 2217-2220 (2008). https://doi.org/10.1016/j.catcom.2008.05.001
  34. Liu, C. Y., and Aika, K. I., "Ammonia Absorption on Alkaline Earth Halides as Ammonia Separation and Storage Procedure," Bull. Chem. Soc. Jpn., 77(1), 123-131 (2004). https://doi.org/10.1246/bcsj.77.123
  35. Elmoe, T. D., Sorensen, R. Z., Quaade, U., Christensen, C. H., Norskov, J. K., and Johannessen, T., "A High-Density Ammonia Storage/Delivery System Based on $Mg(NH_3)_6Cl_2$ for SCR-DeNOx in Vehicles," Chem. Eng. Sci., 8(61), 2618-2625 (2006).
  36. Darchen, A., Drissi-daoudi, R., and Irzho, A., "Electrochemical Investigations of Copper Etching by $Cu(NH_3)_4Cl_2$ in Ammoniacal Solutions," J. Appl. Electrochem., 27(4), 448-454 (1997). https://doi.org/10.1023/A:1018469805966