References
- Shipman, M. A., and Symes, M. D., "Recent Progress Towards the Electrosynthesis of Ammonia from Sustainable Resources," Catal. Today, 286, 57-68 (2017). https://doi.org/10.1016/j.cattod.2016.05.008
- Giddey, S., Badwal, S. P. S., and Kulkarni, A., "Review of Electrochemical Ammonia Production Technologies and Materials," Int. J. Hydrogen Energy, 38(34), 14576-14594 (2013). https://doi.org/10.1016/j.ijhydene.2013.09.054
- Avery, W. H., "A Role for Ammonia in the Hydrogen Economy," Int. J. Hydrogen Energy, 13(12), 761-773 (1988). https://doi.org/10.1016/0360-3199(88)90037-7
- Lan, R., Irvine, J. T., and Tao, S., "Ammonia and Related Chemicals as Potential Indirect Hydrogen Storage Materials," Int. J. Hydrogen Energy, 37(2), 1482-1494 (2012). https://doi.org/10.1016/j.ijhydene.2011.10.004
- Kozuch, S., and Shaik, S., "Kinetic-Quantum Chemical Model for Catalytic Cycles: the Haber-Bosch Process and the Effect of Reagent Concentration," J. Phys. Chem. A, 112(26), 6032-6041 (2008). https://doi.org/10.1021/jp8004772
- Erisman, J. W., Sutton, M. A., Galloway, J., Klimont, Z., and Winiwarter, W., "How a Century of Ammonia Synthesis Changed the World," Nat. Geosci., 1(10), 636-639 (2008). https://doi.org/10.1038/ngeo325
- Kim, K., Lee, S. J., Kim, D. Y., Yoo, C. Y., Choi, J. W., Kim, J. N., and Han, J. I., "Electrochemical Synthesis of Ammonia from Water and Nitrogen: A Lithium-Mediated Approach Using Lithium-Ion Conducting Glass Ceramics," ChemSusChem, 11(1), 120-124 (2018). https://doi.org/10.1002/cssc.201701975
- Chen, S., Perathoner, S., Ampelli, C., Mebrahtu, C., Su, D., and Centi, G., "Electrocatalytic Synthesis of Ammonia at Room Temperature and Atmospheric Pressure from Water and Nitrogen on a Carbon-Nanotube-Based Electrocatalyst," Angew. Chem. Int. Ed. Engl., 56(10), 2699-2703 (2017). https://doi.org/10.1002/anie.201609533
- Jeong, E. Y., Yoo, C. Y., Jung, C. H., Park, J. H., Park, Y. C., Kim, J. N., and Yoon, H. C., "Electrochemical Ammonia Synthesis Mediated by Titanocene Dichloride in Aqueous Electrolytes under Ambient Conditions," ACS Sustain. Chem. Eng., 5(11), 9662-9666 (2017). https://doi.org/10.1021/acssuschemeng.7b02908
- Kordali, V., Kyriacou, G., and Lambrou, C., "Electrochemical Synthesis of Ammonia at Atmospheric Pressure and Low Temperature in a Solid Polymer Electrolyte Cell," Chem. Commun., (17), 1673-1674 (2000).
- Yun, D. S., Joo, J. H., Yu, J. H., Yoon, H. C., Kim, J. N., and Yoo, C. Y., "Electrochemical Ammonia Synthesis from Steam and Nitrogen using Proton Conducting Yttrium Doped Barium Zirconate Electrolyte with Silver, Platinum, and Lanthanum Strontium Cobalt Ferrite Electrocatalyst," J. Power Sources, 284, 245-251 (2015). https://doi.org/10.1016/j.jpowsour.2015.03.002
- Kyriakou, V., Garagounis, I., Vasileiou, E., Vourros, A., and Stoukides, M., "Progress in the Electrochemical Synthesis of Ammonia," Catal. Today, 286, 2-13 (2017). https://doi.org/10.1016/j.cattod.2016.06.014
- Garagounis, I., Kyriakou, V., Skodra, A., Vasileiou, E., and Stoukides, M., "Electrochemical Synthesis of Ammonia in Solid Electrolyte Cells," Front. Energy Res., 2(1), 1-10 (2014).
- Amar, I. A., Lan, R., Petit, C. T., and Tao, S., "Solid-State Electrochemical Synthesis of Ammonia: a Review," J. Solid State Electrochem., 15(9), 1845 (2011). https://doi.org/10.1007/s10008-011-1376-x
- Rieth, A. J., and Dinca, M., "Controlled Gas Uptake in Metal-Organic Frameworks with Record Ammonia Sorption," J. Am. Chem. Soc., 140(9), 3461-3466 (2018). https://doi.org/10.1021/jacs.8b00313
- Bandosz, T. J., and Petit, C., "On the Reactive Adsorption of Ammonia on Activated Carbons Modified by Impregnation with Inorganic Compounds," J. Colloid Interface Sci., 338(2), 329-345 (2009). https://doi.org/10.1016/j.jcis.2009.06.039
- Oktavitri, N. I., Purnobasuki, H., Kuncoro, E. P., and Purnamasari, I., "Ammonia Removal Using Coconut Shell Based Adsorbent: Effect of Carbonization Duration and Contact Time," IPTEK Journal of Proceedings Series, 3(4), 26-32 (2017).
- Goncalves, M., Sanchez-Garcia, L., Oliveira Jardim, E. D., Silvestre-Albero, J., and Rodriguez-Reinoso, F., "Ammonia Removal using Activated Carbons: Effect of the Surface Chemistry in Dry and Moist Conditions," Environ. Sci. Technol., 45(24), 10605-10610 (2011). https://doi.org/10.1021/es203093v
- Huang, C. C., Li, H. S., and Chen, C. H., "Effect of Surface Acidic Oxides of Activated Carbon on Adsorption of Ammonia," J. Hazard. Mater., 159(2-3), 523-527 (2008). https://doi.org/10.1016/j.jhazmat.2008.02.051
- Khabzina, Y., and Farrusseng, D., "Unravelling Ammonia Adsorption Mechanisms of Adsorbents in Humid Conditions," Microporous Mesoporous Mater., 265, 143-148 (2018). https://doi.org/10.1016/j.micromeso.2018.02.011
- Somy, A., Mehrnia, M. R., Amrei, H. D., Ghanizadeh, A., and Safari, M., "Adsorption of Carbon Dioxide using Impregnated Activated Carbon Promoted by Zinc," Int. J. Greenhouse Gas Control, 3(3), 249-254 (2009). https://doi.org/10.1016/j.ijggc.2008.10.003
- Huang, C. C., Chen, H. M., Chen, C. H., and Huang, J. C., "Effect of Surface Oxides on Hydrogen Storage of Activated Carbon," Sep. Purif. Technol., 70(3), 291-295 (2010). https://doi.org/10.1016/j.seppur.2009.10.009
- Park, J. H., Hwang, R. H., Yoon, H. C., and Yi, K. B., "Effects of Metal Loading on Activated Carbon on Its Adsorption and Desorption Characteristics," J. Ind. Eng. Chem., 74, 199-207 (2019). https://doi.org/10.1016/j.jiec.2019.03.004
- Park, J. H., Rasheed, H., Cho, K. H., Yoon, H. C., and Yi, K. B., "Effects of Magnesium Loading on Ammonia Capacity and Thermal Stability of Activated Carbons," Korean J. Chem. Eng., 37(6), 1029-1035 (2020). https://doi.org/10.1007/s11814-020-0508-3
-
Mehdipour, M., and Fatemi, S., "Modeling of a PSA-TSA Process for Separation of
$CH_4$ from$C_2$ Products of OCM Reaction," Sep. Sci. Technol., 47(8), 1199-1212 (2012). https://doi.org/10.1080/01496395.2011.644019 - Smith, A. R., and Klosek, J., "A Review of Air Separation Technologies and Their Integration with Energy Conversion Processes," Fuel Process. Technol., 70(2), 115-134 (2001). https://doi.org/10.1016/S0378-3820(01)00131-X
- Loy, Y. Y., Lee, X. L., and Rangaiah, G. P., "Bioethanol Recovery and Purification using Extractive Dividing-Wall Column and Pressure Swing Adsorption: An Economic Comparison after Heat Integration and Optimization," Sep. Purif. Technol., 149, 413-427 (2015). https://doi.org/10.1016/j.seppur.2015.06.007
- Rege, S. U., Yang, R. T., Qian, K., and Buzanowski, M. A., "Air-Prepurification by Pressure Swing Adsorption using Single/Layered Beds," Chem. Eng. Sci., 56(8), 2745-2759 (2001). https://doi.org/10.1016/S0009-2509(00)00531-5
-
Ho, M. T., Allinson, G. W., and Wiley, D. E., "Reducing the Cost of
$CO_2$ Capture from Flue Gases using Pressure Swing Adsorption," Ind. Eng. Chem. Res., 47(14), 4883-4890 (2008). https://doi.org/10.1021/ie070831e - Al Amer, A. M., Laoui, T., Abbas, A., Al-Aqeeli, N., Patel, F., Khraisheh, M., Atieh, M. A., and Hilal, N., "Fabrication and Antifouling Behaviour of a Carbon Nanotube Membrane," Mater. Des., 89, 549-558 (2016). https://doi.org/10.1016/j.matdes.2015.10.018
-
Park, J. H., Baek, J. H., Jo, G. H., Rasheed, H. U., and YI, K. B., "Catalytic Characteristic of Water-Treated Cu/ZnO/MgO/
$Al_2O_3$ Catalyst for LT-WGS Reaction," Trans. Korean Hydrog. New Energy Soc., 30(2), 95-102 (2019). https://doi.org/10.7316/KHNES.2019.30.2.95 -
Jeong, J. M., Park, J. H., Baek, J. H., Hwang, R. H., Jeon, S. G., and Yi, K. B., "Effect of Acid Treatment of Fe-BEA Zeolite on Catalytic
$N_2O$ Conversion," Korean J. Chem. Eng., 34(1), 81-86 (2017). https://doi.org/10.1007/s11814-016-0239-7 -
Wu, Z., Jin, R., Liu, Y., and Wang, H., "Ceria Modified
$MnO_x/TiO_2$ as a Superior Catalyst for NO Reduction with NH3 at Low-Temperature," Catal. Commun., 9(13), 2217-2220 (2008). https://doi.org/10.1016/j.catcom.2008.05.001 - Liu, C. Y., and Aika, K. I., "Ammonia Absorption on Alkaline Earth Halides as Ammonia Separation and Storage Procedure," Bull. Chem. Soc. Jpn., 77(1), 123-131 (2004). https://doi.org/10.1246/bcsj.77.123
-
Elmoe, T. D., Sorensen, R. Z., Quaade, U., Christensen, C. H., Norskov, J. K., and Johannessen, T., "A High-Density Ammonia Storage/Delivery System Based on
$Mg(NH_3)_6Cl_2$ for SCR-DeNOx in Vehicles," Chem. Eng. Sci., 8(61), 2618-2625 (2006). -
Darchen, A., Drissi-daoudi, R., and Irzho, A., "Electrochemical Investigations of Copper Etching by
$Cu(NH_3)_4Cl_2$ in Ammoniacal Solutions," J. Appl. Electrochem., 27(4), 448-454 (1997). https://doi.org/10.1023/A:1018469805966