• Title/Summary/Keyword: Electrochemical Impedance spectroscopy

Search Result 543, Processing Time 0.03 seconds

Consideration on the Non-linearity of Warburg Impedance for Fourier Transform Electrochemical Impedance Spectroscopy

  • Chang, Byoung-Yong
    • Journal of the Korean Electrochemical Society
    • /
    • v.17 no.2
    • /
    • pp.119-123
    • /
    • 2014
  • Here I report on how Fourier Transform Electrochemical Impedance Spectroscopy (FTEIS) overcomes the potential-current linearity problem encountered in the impedance calculation process. FTEIS was first invented to solve the time-related drawback of the conventional impedance technique. The dramatic time reduction of FTEIS enabled the real-time impedance measurement but brought about the linearity problem at the same time. While the conventional method circumvents the problem using the steady-state made by a sufficiently long measurement time, FTEIS cannot because of its real-time function. However, according to the mathematical development reported in this article, the potential step used in FTEIS is proved to avoid the linearity problem. During the step period, the potential and the current are linearized by the electrochemical impedance. Also, Fourier transform of the differentiated potential and current is proved to give the same result of the original ones.

A New Algorithm Design for the Real-time Electrochemical Impedance Monitoring System

  • Chang, Byoung-Yong
    • Journal of Electrochemical Science and Technology
    • /
    • v.3 no.4
    • /
    • pp.154-158
    • /
    • 2012
  • It is generally known that electrochemical impedance spectroscopy is a powerful technique and its real-time application has been demanded for prompt observations on instantaneous electrochemical changes. Nevertheless, long measurement time and laborious analysis procedures have hindered development of it. Solving the problems, here I report of a new algorithm design for development of a real-time electrochemical impedance monitoring system, which potentially provides a guideline in developing monitoring systems of electric vehicles batteries and other electrochemical power plants. The significant progress in this report is employment of the parallel processing protocol which connects independent sub functions to successfully operate with avoiding mutual interruptions. Therefore, all the processes required to monitor electrochemical impedance changes in realtime are properly operated. To realize the conceptual scheme, a Labview program was coded with sub functions units which conduct their processes individually and only data are transferred between them through the parallel pipelines. Finally, measured impedance spectra and analysis results are displayed, which are synchronized according to the time of change.

Electrochemical Oxidation of Ethanol at $RuO_2-Modified$ Nickel Electrode in Alkaline Media Studied by Electrochemical Impedance Spectroscopy

  • Kim Jae-Woo;Park Su-Moon
    • Journal of the Korean Electrochemical Society
    • /
    • v.3 no.2
    • /
    • pp.76-80
    • /
    • 2000
  • Electrochemical oxidation of ethanol has been studied at nickel and $RuO_2-modified$ nickel electrodes in 1 M KOH using electrochemical impedance spectroscopy. Equivalent circuits have been worked out from simulation of impedance data to model oxidation of ethanol as well as the passivation of the electrode. The charge-transfer resistances for oxidation of these electrodes became smaller in the presence of ethanol than in its absence. The nickel substrate facilitated ethanol oxidation at $RuO_2-modified$ nickel electrodes. We also describe the Performance of nanosized electrocatalysts of the same composition in comparison to those of the bulk electrodes. The nanosized electrodes were obtained by electrode-positing the alloy from complexed form of these metal ions with fourth and fifth generation polyamidoamine dendrimers.

Detection of Unbalanced Voltage Cells in Series-connected Lithium-ion Batteries Using Single-frequency Electrochemical Impedance Spectroscopy

  • Togasaki, Norihiro;Yokoshima, Tokihiko;Oguma, Yasumasa;Osaka, Tetsuya
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.4
    • /
    • pp.415-423
    • /
    • 2021
  • For a battery module where single cells are connected in series, the single cells should each have a similar state of charge (SOC) to prevent them from being exposed to an overcharge or over-discharge during charge-discharge cycling. To detect the existence of unbalanced SOC cells in a battery module, we propose a simple measurement method using a single-frequency response of electrochemical impedance spectroscopy (EIS). For a commercially available graphite/nickel-cobalt-aluminum-oxide lithium-ion cell, the cell impedance increases significantly below SOC20%, while the impedance in the medium SOC region (SOC20%-SOC80%) remains low with only minor changes. This impedance behavior is mostly due to the elementary processes of cathode reactions in the cell. Among the impedance values (Z, Z', Z"), the imaginary component of Z" regarding cathode reactions changes heavily as a function of SOC, in particular, when the EIS measurement is performed around 0.1 Hz. Thanks to the significant difference in the time constant of cathode reactions between ≤SOC10% and ≥SOC20%, a single-frequency EIS measurement enlarges the difference in impedance between balanced and unbalanced cells in the module and facilitates an ~80% improvement in the detection signal compared to results with conventional EIS measurements.

Corrosion Evaluation of Epoxy-Coated Bars by Electrochemical Impedance Spectroscopy

  • Choi, Oan-Chul;Park, Young-Su;Ryu, Hyung-Yun
    • International Journal of Concrete Structures and Materials
    • /
    • v.2 no.2
    • /
    • pp.99-105
    • /
    • 2008
  • Southern exposure test specimens were used to evaluate corrosion performance of epoxy-coated reinforcing bars in chloride contaminated concrete by electrochemical impedance spectroscopy method. The test specimens with conventional bars, epoxy-coated bars and corrosion inhibitors were subjected 48 weekly cycles of ponding with sodium chloride solution and drying. The polarization resistance obtained from the Nyquist plot was the key parameter to characterize the degree of reinforcement corrosion. The impedance spectra of specimens with epoxy-coated bars are mainly governed by the arc of the interfacial film and the resistance against the charge transfer through the coating is an order of magnitude higher than that of the reference steel bars. Test results show good performance of epoxy-coated bars, although the coatings had holes simulating partial damage, and the effectiveness of corrosion-inhibiting additives. The corrosion rate obtained from the impedance spectroscopy method is equivalent to those determined by the linear polarization method for estimating the rate of corrosion of reinforcing steel in concrete structures.

In-depth Investigation on Interfacial Resistance of Stainless Steel by Using Dynamic Electrochemical Impedance Spectroscopy (Dynamic Electrochemical Impedance Spectroscopy를 이용한 스테인리스 강의 계면 저항 분석)

  • Heo, Jung-Ho;Lee, Yong-Heon;Shin, Heon-Cheol
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.10
    • /
    • pp.644-651
    • /
    • 2009
  • The passivation (or deactivation) of a metal surface during oxide film formation has been quantitatively explored for a ferritic stainless steel by using dynamic electrochemical impedance spectroscopy (DEIS). For this purpose, the electrochemical impedance spectra were carefully examined as a function of applied potential in the active nose region of the potentiodynamic polarization curve, to separate the charge transfer resistance and oxide film resistance. From the discrepancy in the potential dependence between the experimental charge transfer resistance and the semi-empirically expected one, the degree of passivation could be quantitatively estimated. The sensitivity of passivation of the steel surface to anodic potential, which might be the measure of the quality of the oxide film formed under unit driving force or over-potential, decreased by 31% when 3.5 wt% NaCl was added to a 5 wt% $H_2SO_4$ solution.

New Analysis of Electrochemical Impedance Spectroscopy for Lithium-ion Batteries

  • Osaka, Tetsuya;Nara, Hiroki;Mukoyama, Daikichi;Yokoshima, Tokihiko
    • Journal of Electrochemical Science and Technology
    • /
    • v.4 no.4
    • /
    • pp.157-162
    • /
    • 2013
  • First of all, we express our deepest sympathies for the passing of Professor Su-Moon Park. In the present paper, an electrochemical impedance spectroscopy (EIS), which Professor Su-Moon Park also used frequently for the investigation of electroconducting polymer, is introduced as a recent evaluation tool for a commercially available lithium-ion battery (LIB). The paper surveys how to design equivalent circuits while explaining physical and chemical phenomena in the LIB and how to get more accurate impedance spectra with varying the measuring temperatures. Additionally, a square current EIS (SC-EIS) technique, which we have suggested, is introduced for the larger LIB system as a promising technique for the future.

Electrochemical Impedance Spectroscopy (EIS) Performance Analysis and Challenges in Fuel Cell Applications

  • Padha, Bhavya;Verma, Sonali;Mahajan, Prerna;Arya, Sandeep
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.167-176
    • /
    • 2022
  • Electrochemical impedance spectroscopy (EIS) is a unique non-destructive technique employed to analyze various devices in different energy storage applications. It characterizes materials and interfaces for their properties in heterogeneous systems employing equivalent circuits as models. So far, it has been used to analyze the performance of various photovoltaic cells, fuel cells, batteries, and other energy storage devices, through equivalent circuit designing. This review highlights the diverse applications of EIS in fuel cells and specific parameters affecting its performance. A particular emphasis has been laid on the challenges faced by this technique and their possible solutions.

Optical Interferometry as Electrochemical Emission Spectroscopy of Metallic alloys in Aqueous Solutions

  • Habib, K.;AI-Mazeedi, H.
    • Corrosion Science and Technology
    • /
    • v.2 no.6
    • /
    • pp.277-282
    • /
    • 2003
  • Holographic interferometry, an electromagnetic method, was used to study corrosion of carbon steel, aluminum and copper nickel alloys in NaOH, KCI and $H_2SO_4$ solutions respectively. The technique, called electrochemical emission spectroscopy, consisted of in-situ monitoring of changes in the number of fringe evolutions during the corrosion process. It allowed a detailed picture of anodic dissolution rate changes of alloys. The results were compared to common corrosion measurement methods such as linear polarization resistance measurements and electrochemical impedance spectroscopy. A good agreement between both data was found, thus indicating that holographic interferometry can be a very powerful technique for in-situ corrosion monitoring.

Anodization of Aluminium Samples in Boric Acid Solutions by Optical Interferometry Techniques

  • Habib, K.
    • Corrosion Science and Technology
    • /
    • v.4 no.6
    • /
    • pp.217-221
    • /
    • 2005
  • In the present investigation, holographic interferometry was utilized for the first time to monitor in situ the thickness of the oxide film of aluminium samples during anodization processes in boric acid solutions. The anodization process (oxidation) of the aluminium samples was carried out by the technique of the electrochemical impedance spectroscopy(EIS), in different concentrations of boric acid (0.5-5.0% $H_3BO_3$) at room temperature. In the mean time, the real-time holographic interferometry was used to measure the thickness of anodized (oxide) film of the aluminium samples in solutions. Consequently, holographic interferometry is found very useful for surface finish industries especially for monitoring the early stage of anodization processes of metals, in which the thickness of the anodized film of the aluminium samples can be determined without any physical contact. In addition, measurements of electrochemical values such as the alternating current (A.C) impedance(Z), the double layer capacitance($C_{dl}$), and the polarization resistance(Rp) of anodized films of aluminium samples in boric acid solutions were made by the electrochemical impedance spectroscopy(EIS). Attempts to measure electrochemical values of Z, Cdl, and Rp were not possible by holographic interferometry in boric acid especially in low concentrations of the acid. This is because of the high rate of evolutions of interferometric fringes during the anodization process of the aluminium samples in boric acid, which made measurements of Z, Cdl, and Rp are difficult.