In-depth Investigation on Interfacial Resistance of Stainless Steel by Using Dynamic Electrochemical Impedance Spectroscopy

Dynamic Electrochemical Impedance Spectroscopy를 이용한 스테인리스 강의 계면 저항 분석

  • Heo, Jung-Ho (School of Materials Science and Engineering, Pusan National University) ;
  • Lee, Yong-Heon (Stainless Steel Research Group, POSCO) ;
  • Shin, Heon-Cheol (School of Materials Science and Engineering, Pusan National University)
  • 허정호 (부산대학교 재료공학부) ;
  • 이용헌 (포스코 기술연구소 STS 연구그룹) ;
  • 신헌철 (부산대학교 재료공학부)
  • Received : 2009.05.28
  • Published : 2009.10.25

Abstract

The passivation (or deactivation) of a metal surface during oxide film formation has been quantitatively explored for a ferritic stainless steel by using dynamic electrochemical impedance spectroscopy (DEIS). For this purpose, the electrochemical impedance spectra were carefully examined as a function of applied potential in the active nose region of the potentiodynamic polarization curve, to separate the charge transfer resistance and oxide film resistance. From the discrepancy in the potential dependence between the experimental charge transfer resistance and the semi-empirically expected one, the degree of passivation could be quantitatively estimated. The sensitivity of passivation of the steel surface to anodic potential, which might be the measure of the quality of the oxide film formed under unit driving force or over-potential, decreased by 31% when 3.5 wt% NaCl was added to a 5 wt% $H_2SO_4$ solution.

Keywords

Acknowledgement

Supported by : POSCO

References

  1. M. Metikos-Hukovic, Corros. Sci. 51, 70 (2009) https://doi.org/10.1016/j.corsci.2008.10.004
  2. K. Hashimoto, Corros. Sci. 49, 42 (2007) https://doi.org/10.1016/j.corsci.2006.05.003
  3. S. H. Cho, S. S. Hong, D. S. Kang, J. M. Hur, and H. S. Lee, Met. Mater. Int. 15, 51 (2009) https://doi.org/10.1007/s12540-009-0051-6
  4. R. Ramanauskas, Corros. Sci. 40, 401 (1998) https://doi.org/10.1016/S0010-938X(97)00144-3
  5. S. B. Lalvani, Corros. Sci. 37, 1599 (1995) https://doi.org/10.1016/0010-938X(95)00057-Q
  6. K. H. Jeong and I. S. Lee, J. Kor. Inst. Met. & Mater. 45, 669 (2007)
  7. R. D. Armstrong, M. Henderson, and H. R. Thirsk, J. Electroanal. Chem. 35, 119 (1972) https://doi.org/10.1016/S0022-0728(72)80300-0
  8. K. Darowicki, G. Lentka, and J. Orlikowski, J. Electroanal. Chem. 486, 106 (2000) https://doi.org/10.1016/S0022-0728(00)00111-X
  9. K. Darowicki and P. Slepski, J. Electroanal. Chem. 547, 1 (2003) https://doi.org/10.1016/S0022-0728(03)00154-2
  10. K. Darowicki and P. Slepski, J. Electroanal. Chem. 533, 25 (2002) https://doi.org/10.1016/S0022-0728(02)01085-9
  11. K. Darowicki, J. Orlikowski, and A. Arutunow, Corros. Sci. Eng. Tech. 39, 255 (2004) https://doi.org/10.1179/147842204X2844
  12. K. Darowicki, Electrochim. Acta 49, 2909 (2004) https://doi.org/10.1016/j.electacta.2004.01.070
  13. S. M. Park, J. S. Yoo, B. Y. Chang, and E. S. Ahn, Pure Appl. Chem. 78, 1069 (2006) https://doi.org/10.1351/pac200678051069
  14. P. Chung and S. Szklarska-Smialowska, Corrosion 37, 39 (1981) https://doi.org/10.5006/1.3593836
  15. ASTM G5-94: Standard Reference Test Method for Making Potentiostatic and Potentiodynamic Anodic Polarization Measurements
  16. ASTM G106-89: Standard Practice for Verification of Algorithm and Equipment for Electrochemical Impedance Measurements
  17. Daniel Schuhmann, J. Electroanal. Chem. 17, 45 (1968) https://doi.org/10.1016/S0022-0728(68)80029-4
  18. T. P. Hoar, D. C. Mears, and G. P. Rothwell, Corros. Sci. 5, 279 (1965) https://doi.org/10.1016/S0010-938X(65)90614-1
  19. K. J. Vetter and H. H. Strehblow, Ber. Bunsenges. Phys. Chem. 74, 1024 (1970)
  20. N. Sato, Electrochim. Acta 16, 1683 (1971) https://doi.org/10.1016/0013-4686(71)85079-X
  21. N. Sato, K. Kudo, and T. Noda, Electrochim. Acta 16, 1909 (1971) https://doi.org/10.1016/0013-4686(71)85146-0
  22. Ya. J. Kolotyrkin, Corrosion 19, 261 (1964)
  23. T. P. Hoar and W. R. Jacob, Nature 216, 1299 (1967) https://doi.org/10.1038/2161299a0
  24. Digby D. Macdonald, J. Electrochem. Soc. 139, 3434 (1992) https://doi.org/10.1149/1.2069096
  25. Sejin Ahn, J. Electrochem. Soc. 152, B482 (2005) https://doi.org/10.1149/1.2048247
  26. A. J. Bard, Electrochemical Methods, 2nd ed., p.92, John Wiley & Sons (2001)
  27. N. Sato and M. Cohen, J. Electrochem. Soc. 111, 512 (1964) https://doi.org/10.1149/1.2426170
  28. M. Stern, J. Electrochem. Soc. 106, 376 (1959) https://doi.org/10.1149/1.2427363
  29. G. T. Burstein and A. J. Davenport, J. Electrochem. Soc. 136, 936 (1989) https://doi.org/10.1149/1.2096890
  30. G. T. Burstein and R. K. Misra, Electrochim. Acta 28, 825 (1983) https://doi.org/10.1016/0013-4686(83)85154-8
  31. J.-H. Heo, Y.-H. Lee, and H.-C. Shin, manuscript in preparation