• 제목/요약/키워드: Electro-electrodialysis

검색결과 22건 처리시간 0.026초

열화학적 수소제조 IS 프로세스의 효율향상을 위한 전해-전기투석의 실험적 평가 (Evaluation on the Electro-electrodialysis for hydrogen production by thermochemical water-splitting IS process)

  • 홍성대;김정근;이상호;최상일;배기광;황갑진
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 춘계학술대회
    • /
    • pp.13-16
    • /
    • 2006
  • Electro-electrodialysis (EED) experiments were carried out for the HI concentration from HIx $(HI-H_2O-I_2)$ solution to improve the Hl decomposition reaction in the thermochemical water-splitting is (iodine-Sulfur) process. EED cell is composed of the collector electrode and electrolyte. Nafion 117 which was cation exchange membrane used as an electrolyte, and the activated carbon cloth used as an electrode. The HI concentration experiment was carried out using the HIx solution and molar ratio of the $I_2$ were varied from 1 to 3 mole. The cell voltages were decreased as temperature increase. And, membrane properties such as transport number of proton and electro-osmosis coefficient were decreased as temperature increase

  • PDF

금속회수공정에서 발생되는 Na2SO4 폐액으로 부터 NaOH 및 H2SO4 재생을 위한 Electro-membrane 응용 (Application of Electro-membrane for Regeneration of NaOH and H2SO4 from the Spent Na2SO4 Solutions in Metal Recovery Process)

  • 조연철;김기훈;안재우
    • 자원리싸이클링
    • /
    • 제31권5호
    • /
    • pp.3-19
    • /
    • 2022
  • 전기막(Electro-membrane) 기술은 전기투석(ED) 및 바이폴라 전기투석(BMED)과 같이 선택적 투과성을 갖는 이온교환막을 사용하여 전기에너지에 의하여 수용액 내의 물질을 분리·정제하는 공정이다. 전기막(Electro-membrane) 기술은 공정 중에 부산물이 발생하지 않고 회수된 염기나 산을 공정 중에 재사용할 수 있어 환경 친화적인 기술로 주목받고 있다. 본고에서는 전기분리막 기술인 ED와 BMED 기술의 원리 및 셀(Cell) 구성에 따른 여러 가지 특성 및 문제점 등에 대해 조사하고, 특히 금속회수 공정 중 다량 발생되고 있는 황산나트륨(Na2SO4) 폐액 처리와 관련된 연구사례들을 조사·분석하였다.

Influence of counter anions on metal separation and water transport in electrodialysis treating plating wastewater

  • Oh, Eunjoo;Kim, Joohyeong;Ryu, Jun Hee;Min, Kyung Jin;Shin, Hyun-Gon;Park, Ki Young
    • Membrane and Water Treatment
    • /
    • 제11권3호
    • /
    • pp.201-206
    • /
    • 2020
  • Electrodialysis (ED) is used in wastewater treatment, during the processing and recovery of beneficial materials, to produce usable water. In this study, sulfate and chlorine ions, which are the anions majorly used for electroplating, were studied as factors affecting the recovery of copper, nickel and water from wastewater by electrodialysis. Although the removal rates of copper and nickel ions were slightly higher with the use of chlorine ions than of sulfate ions, the removal efficiencies were above 99.9% under all experimental conditions. The metal ions of the plating wastewater flowed through the ion exchange membrane of the diluate tank and the concentrate tank while all the water moved together due to electro-osmosis. The migration of water from the diluate tank to the concentrate tank was higher in the presence of a monovalent chloride ion compared to that of a divalent sulfate ion. When sulfate was the anion used, the recoveries of copper and nickel increased by about 25% and 30%, respectively, as compared to the chloride ion. Therefore, when divalent ions such as sulfate are present in the electrodialysis, it is possible to reduce the movement amount of water and highly concentrate the copper and nickel in the plating wastewater.

HI 농축을 위한 전해-전기투석 셀의 스케일-업에 관한 연구 (Study on Scale-up of Electro-Electrodialysis [EED] Cell for HI Concentration)

  • 이상호;홍성대;김정근;황갑진;문일식
    • 한국수소및신에너지학회논문집
    • /
    • 제18권4호
    • /
    • pp.458-463
    • /
    • 2007
  • An experimental study on scale-up of Electro-electrodialysis(EED) to increase the efficiency of HI decomposition section in the IS(Iodine-Sulfur) process was carried out. The EED stack extends the effective area of the membrane to 20 times of that formerly used in a single EED unit cell. The experiment was carried out using HIx solution($HI:H_2O:I_2=1:8.4{\sim}9:1.85{\sim}1.9$) at $100^{\circ}C$ and various solution flow rates of 20, 30, 40 and 50 cc/min. The increased HI molality in catholyte after one-pass throughout from the EED stack was 3 mol/kg-$H_2O$, 2.2 mol/kg-$H_2O$, 2 mol/kg-$H_2O$ and 1.37 mol/kg-$H_2O$ at 20, 30, 40 and 50 cc/min, respectively. These values satisfied the target of HI molality(the increase of HI molality: 2 mol/kg-$H_2O$) in the IS process for hydrogen production of 20 L/hr.

전자선 가속기에 의해 방사선 처리한 양이온교환막을 이용한 전해-전기투석에 의한 HIx용액으로부터 HI의 농축 (Electro-electrodialysis Using the Radiation-treated Cation Exchange Membrane by Accelerated Electron Radiation to Concentrate HI from HIx Solution)

  • 황갑진;김정근;이상호;최호상
    • 멤브레인
    • /
    • 제17권4호
    • /
    • pp.338-344
    • /
    • 2007
  • HI몰랄리티가 9.5 $mol/kg-H_2O$인 HI의 전해-전기투석을 시판의 양이온교환막(CMB)을 이용하여 요오드의 존재하에 실험을 진행하였다. 수소이온 투과의 선택성을 증가시키기 위해, 막은 전자선 가속기를 이용하여 방사선 처리하였다. 방사선 처리한 막의 막특성(막 저항, 이온교환용량, 함수율)을 측정하였다. 각각의 방사선량에서 처리한 막의 2 $mol/dm^3$의 KCl 용액에서 막저항, 이온교환용량과 함수율은 처리하지 않은 막과 거의 동등의 값을 가졌다. HI몰랄리티가 9.5 $mol/kg-H_2O$인 HI의 전해-전투기투석을 $75^{\circ}C$, 9.6 $A/dm^2$에서 진행하였다. 전자선 가속기에 의해 방사선 처리한 양이온교환막은 처리하지 않은 막과 비교하여 고분자의 가교구조와 함께 수소이온투과의 높은 선택성을 가졌다.

Anolyte와 Catholyte의 비율에 따른 HI 농축 전기투석 셀의 성능변화 (Effect of Catholyte to Anolyte Amount Ratio on the Electrodialysis Cell Performance for HI Concentration)

  • 김창희;조원철;강경수;박주식;배기광
    • 한국수소및신에너지학회논문집
    • /
    • 제21권6호
    • /
    • pp.507-512
    • /
    • 2010
  • The effect of catholyte to anolyte amount ratio on the electrodialysis cell performance for HI concentration was investigated. For this purpose, the electrodialysis cell was assembled with Nafion 117 as PEM membrane and activated carbon fiber cloth as electrodes. The initial amount of catholyte was 310 g and that of anolyte varied from 1 to 3 of amount ratio. The calculated electro motive force (EMF) increased with time and the increment enhanced as the amount ratio of catholyte to anolyte decreased. The mole ratios of HI to $H_2O$ (HI molarity) in catholyte were almost the same and exceeded pseudo-azeotropic composition for all amount ratios after 2 h operation. The HI molarity continuously increased with time for 10 h operation. The mole ratio of $I_2$ to HI decreased in catholyte but increased in anolyte. The increment of mole ratio of $I_2$ to HI in anolyte rose as the amount ratio of catholyte to anolyte decreased. In case of 1:1 amount ratio, the cell operation was stopped for the safety at approximately 6 h operation, since the mole ratio of $I_2$ to HI reached solubility limit. The cell voltage of the electrodialysis cell increased with time and the rate of increase was high at low amount ratio. This suggests that the amount ratio of catholyte to anolyte not only crucially influences the cell voltage, but also cell operation condition.

전기투석시스템을 활용한 염생식물 칠면초(Suaeda japonica) 추출물의 염분 표준화에 따른 주요 성분 및 생리활성 비교 연구 (Comparison of the Biological Activities of Electrodialysis-desalted Bioactive Compounds from the Halophyte Suaeda japonica)

  • 박현호;고석천;정원교
    • 한국수산과학회지
    • /
    • 제49권2호
    • /
    • pp.124-130
    • /
    • 2016
  • To effectively remove salts from Suaeda japonica, extracts, an electrodialysis system was developed. The biological activities of non-desalted (NDS) and desalted S. japonica (DS) extracts were compared. The DS extract exhibited superior polyphenolic (6.26%) and carbohydrate (28.56%) contents. The IC50 values of the DS extract against DPPH radicals and hydrogen peroxide were 0.22 and 0.68 mg/mL, respectively, which was higher than that of the NDS extract. Neither the DS nor the NDS extract was cytotoxic in RAW 264.7 macrophages. Additionally, the DS extract had a higher NO inhibitory effect compared to the NDS extract in lipopolysaccharide (LPS)-activated RAW 264.7 macrophages. These data indicate that DS extracts have greater biological activity than do ND extracts, and application of the electrodialysis process may be useful in marine bioresource applications.

Continuous ion-exchange membrane electrodialysis of mother liquid discharged from a salt-manufacturing plant and transport of Cl- ions and SO42- ions

  • Tanaka, Yoshinobu;Uchino, Hazime;Murakami, Masayoshi
    • Membrane and Water Treatment
    • /
    • 제3권1호
    • /
    • pp.63-76
    • /
    • 2012
  • Mother liquid discharged from a salt-manufacturing plant was electrodialyzed at 25 and $40^{\circ}C$ in a continuous process integrated with $SO_4{^{2-}}$ ion low-permeable anion-exchange membranes to remove $Na_2SO_4$ and recover NaCl in the mother liquid. Performance of electrodialysis was evaluated by measuring ion concentration in a concentrated solution, permselectivity coefficient of $SO_4{^{2-}}$ ions against $Cl^-$ ions, current efficiency, cell voltage, energy consumption to obtain one ton of NaCl and membrane pair characteristics. The permselectivity coefficient of $SO_4{^{2-}}$ ions against $Cl^-$ ions was low enough particularly at $40^{\circ}C$ and $SO_4{^{2-}}$ transport across anion-exchange membranes was prevented successfully. Applying the overall mass transport equation, $Cl^-$ ion and $SO_4{^{2-}}$ ion transport across anion-exchange membranes is evaluated. $SO_4{^{2-}}$ ion transport number is decreased due to the decrease of electro-migration of $SO_4{^{2-}}$ ions across the anion-exchange membranes. $SO_4{^{2-}}$ ion concentration in desalting cells becomes higher than that in concentration cells and $SO_4{^{2-}}$ ion diffusion is accelerated across the anion-exchange membranes from desalting cells toward concentrating cells.

IS 프로세스의 HI 분해반응공정을 위한 전해 - 전기투석(EED) HI 농축 (HI concentration by EED for the HI decomposition in IS process)

  • 홍성대;김정근;이상호;최상일;배기광;황갑진
    • 한국수소및신에너지학회논문집
    • /
    • 제17권2호
    • /
    • pp.212-217
    • /
    • 2006
  • An experimental study on Electro-electrodialysis (EED) for IS (Iodine-Sulfur) process which is well known as hydrogen production system was carried out for the HI concentration from HIx (HI: $H_2O$ : $I_2$ = 1 : 5 : 1) solution. The polymer electrolyte membrane and the activated carbon cloth were adopted as a cation exchange membrane and electrode, respectively. In order to evaluate the temperature effect about HI concentration in fixed molar ratio, three case of temperature were selected to $60^{\circ}C$, $90^{\circ}C$ and $120^{\circ}C$. The electro-osmosis coefficient and transport number of proton have been changed from 1.95 to 1.21 (mol/Faraday) and 0.91 to 0.76, respectively as temperature increase from $60^{\circ}C$ to $120^{\circ}C$. It can be realized that the HI mole fraction in final stage of EED experiments already over the quasi-azeotrope composition.

전기투석 공정에 의한 알칼리 회수: 총설 (Alkali Recovery by Electrodialysis Process: A Review)

  • 살센벡 아샐;라즈쿠마 파텔
    • 멤브레인
    • /
    • 제33권3호
    • /
    • pp.87-93
    • /
    • 2023
  • 전기투석(ED)은 이온교환막을 통한 이온의 분리에서 중요한 과정이다. 해수담수화로 발생하는 염수 처리는 환경적으로 큰 문제이며 막분리 기술을 통한 재활용 효율이 높다. 마찬가지로 알칼리는 가죽, 전기도금, 염색, 제련 등과 같은 여러 화학 산업에서 생산된다. 폐기물의 고농도 알칼리는 부식성이 높고 화학적 산소 요구량(COD) 값이 높기 때문에 환경에 방출하기 전에 처리해야 합니다. 칼슘과 마그네슘의 농도는 염수의 거의 두 배이며 주요 환경 오염 물질인 이산화탄소의 흡착에 완벽한 후보입니다. 수산화나트륨은 양극성 막 전기투석 공정으로 쉽게 생산되는 금속 탄산화 공정에 필수적입니다. 역삼투압(RO), 나노여과(NF), 초여과(UF), ED 등 다양한 공정을 통해 회수가 가능하다. 본 검토에서는 알칼리 회수를 위한 이온교환막에 의한 ED 공정에 대해 논의한다.