Study on Scale-up of Electro-Electrodialysis [EED] Cell for HI Concentration

HI 농축을 위한 전해-전기투석 셀의 스케일-업에 관한 연구

  • Lee, Sang-Ho (Hydrogen Production & Storage Research Center, Korea Institute of Energy Research) ;
  • Hong, Seong-Dae (Hydrogen Production & Storage Research Center, Korea Institute of Energy Research) ;
  • Kim, Jeong-Keun (Hydrogen Production & Storage Research Center, Korea Institute of Energy Research) ;
  • Hwang, Gab-Jin (Hydrogen Production & Storage Research Center, Korea Institute of Energy Research) ;
  • Moon, Il-Sik (Dep. Chemical Engineering Suncheon National University)
  • 이상호 (한국에너지기술연구원, 수소.연료전지연구본부, 수소제조.저장연구센터) ;
  • 홍성대 (한국에너지기술연구원, 수소.연료전지연구본부, 수소제조.저장연구센터) ;
  • 김정근 (한국에너지기술연구원, 수소.연료전지연구본부, 수소제조.저장연구센터) ;
  • 황갑진 (한국에너지기술연구원, 수소.연료전지연구본부, 수소제조.저장연구센터) ;
  • 문일식 (순천대학교 화학공학과)
  • Published : 2007.12.15

Abstract

An experimental study on scale-up of Electro-electrodialysis(EED) to increase the efficiency of HI decomposition section in the IS(Iodine-Sulfur) process was carried out. The EED stack extends the effective area of the membrane to 20 times of that formerly used in a single EED unit cell. The experiment was carried out using HIx solution($HI:H_2O:I_2=1:8.4{\sim}9:1.85{\sim}1.9$) at $100^{\circ}C$ and various solution flow rates of 20, 30, 40 and 50 cc/min. The increased HI molality in catholyte after one-pass throughout from the EED stack was 3 mol/kg-$H_2O$, 2.2 mol/kg-$H_2O$, 2 mol/kg-$H_2O$ and 1.37 mol/kg-$H_2O$ at 20, 30, 40 and 50 cc/min, respectively. These values satisfied the target of HI molality(the increase of HI molality: 2 mol/kg-$H_2O$) in the IS process for hydrogen production of 20 L/hr.

Keywords

References

  1. J. E. Funk and R. M. Reintrom, 'Energy requirements in the production of hydrogen from water', I&EC Process Design and Development, Vol. 5, 1966, p. 336 https://doi.org/10.1021/i260019a025
  2. 황갑진, 최호상, 강안수, 김종원, 小貫薰, '열화학적 수소제조 IS(요오드-황) 프로세스', 한국공업화학회, Vol. 13, No. 6, 2002, p. 600
  3. 황갑진, 김종원, 심규성, '분리막 기술을 이용한 열화학적 수소제조 IS(요오드-황) 프로세스의 개선', Trans. of the Hydrogen and New Energy Societry, Vol. 13, 2002, pp. 249-258
  4. H. Engels and K. F. Knoche, 'Vapor Pressures of the System $HI/H_2O/I_2$ and $H_2$', Int. J. Hydrogen Energy, Vol. 11, 1986, p. 703 https://doi.org/10.1016/0360-3199(86)90138-2
  5. K. Onuki, G. J. Hwang, S. Shimizu, ' Electrodialysis of hydroiodic acid in the presence of iodine', J. Membr. Sci., 2000, p. 175, p. 171
  6. K. Onuki, G. J. Hwang, Arifal, S. Shimizu, 'Electro-electrodialysis of hydroiodic acid in the presence of iodine at elevated temperature', J. Membr. Sci., 2001, p. 192-193
  7. G. J. Hwang, K. Onuki, M. Nomura, S. Kasahara, J. W. Kim, 'Improvement of the thermochemical water-splitting IS (iodinesulfur) process by electro-electrodialysis', J. Membr. Sic., 2003, p. 220, p. 129
  8. Seiji Kasahara, Shinji Kubo, Kaoru Onuki, Mikihiro Nomura, 'Thermal efficiency evaluation of HI synthesis/concentration procedures in the thermochemical water splitting IS process', Int. Hydrogen Energy, Vol. 29, 2004, p. 579 https://doi.org/10.1016/j.ijhydene.2003.08.005
  9. M. Nomura, S. Kasahara, H. Okuda, S. Nakao, 'Evaluation of the IS process featuring membrane techniques by total thermal efficiency', Int. J. Hydrogen Energy, Vol. 30, p. 1465
  10. Seong-Dae Hong, Chang-Hee Kim, Jeong- Geun Kim, Sang-Ho Lee, Ki-Kwang Bae and Gab-Jin Hwang, 'HI concentration from HIx ($HI-H_2O-I_2$) solution for the thermochemical water-splitting IS process by Electroelectrodialysis', J. Ind. Eng. Chem., Vol. 12, No. 4, 2006, p. 566
  11. Seong-Dae Hong, Jeong-Geun Kim, Ki-Kwang Bae, Sang-Ho Lee, Ho-Sang Choi and Gab-Jin Hwang, 'Evaluation of the membrane properties with changing iodine molar ratio in HIx($HI-H_2O-I_2$) solution to concentrate HI by electro-electrodialysis', J. Memb. Sci., 2007, p. 291, p. 106
  12. K. Onuki, Gab-Jin Hwang, Arifal, S.Shimizu, 'Concentration of HIx solution by electro-electrodialysis', Proceeding of the 66th Japan Chemical Engineering Society Meeting, Hiroshima, Japan, April 2-4, A323, 2001