DOI QR코드

DOI QR Code

Application of Electro-membrane for Regeneration of NaOH and H2SO4 from the Spent Na2SO4 Solutions in Metal Recovery Process

금속회수공정에서 발생되는 Na2SO4 폐액으로 부터 NaOH 및 H2SO4 재생을 위한 Electro-membrane 응용

  • Cho, Yeon-Chul (Department of Advanced Materials Sci. & Eng., Daejin University) ;
  • Kim, Ki-Hun (Department of Advanced Materials Sci. & Eng., Daejin University) ;
  • Ahn, Jae-Woo (Department of Advanced Materials Sci. & Eng., Daejin University)
  • 조연철 (대진대학교 신소재공학과) ;
  • 김기훈 (대진대학교 신소재공학과) ;
  • 안재우 (대진대학교 신소재공학과)
  • Received : 2022.10.04
  • Accepted : 2022.10.20
  • Published : 2022.10.31

Abstract

Electro-membrane technology is a process for separating and purifying substances in aqueous solution by electric energy using an ion exchange membrane with selective permeability, such as electrodialysis (ED) and bipolar electrodialysis (BMED). Electro-membrane technology is attracting attention as an environmental friendly technology because it does not generate by-products during the process and the recovered base or acid can be reused during the process. In this paper, we investigate the principles of ED and BMED technologies and various characteristics and problems according to the cell configuration. In particular, by investigating and analyzing research cases related to the treatment of waste sodium sulfate (Na2SO4), which is generated in large amounts during the metal recovery process.

전기막(Electro-membrane) 기술은 전기투석(ED) 및 바이폴라 전기투석(BMED)과 같이 선택적 투과성을 갖는 이온교환막을 사용하여 전기에너지에 의하여 수용액 내의 물질을 분리·정제하는 공정이다. 전기막(Electro-membrane) 기술은 공정 중에 부산물이 발생하지 않고 회수된 염기나 산을 공정 중에 재사용할 수 있어 환경 친화적인 기술로 주목받고 있다. 본고에서는 전기분리막 기술인 ED와 BMED 기술의 원리 및 셀(Cell) 구성에 따른 여러 가지 특성 및 문제점 등에 대해 조사하고, 특히 금속회수 공정 중 다량 발생되고 있는 황산나트륨(Na2SO4) 폐액 처리와 관련된 연구사례들을 조사·분석하였다.

Keywords

Acknowledgement

본 연구는 2022년도 산업통상자원부의 재원으로 한국산업기술평가관리원(KEIT)의 지원을 받아 수행한 연구과제입니다(소재부품기술개발사업 No. 20018884).

References

  1. O.S.L. Bruinsma, D.J. Branken, T.N. Lemmer, et al., 2021 : Sodium sulfate splitting as zero brine process in a base metal refinery: Screening and optimization in batch mode, Desalination 2021, 511, 115096. https://doi.org/10.1016/j.desal.2021.115096
  2. Matinde, E., G.S. Simate, S. Ndlovu, 2018 : Mining and metallurgical wastes: A review of recycling and re-use practices, J. S. Afr. Inst. Min. Metall., 118, pp.825-844.
  3. Ahmed, S., Nelson, P.A., Gallagher, K.G., et al., 2017 : Cost and energy demand of producing nickel manganese cobalt cathode material for lithium ion batteries, J. Power Sources 2017, 342, pp.733-740. https://doi.org/10.1016/j.jpowsour.2016.12.069
  4. Sakunai, T., Ito, L. & Tokai, A., 2021 : Environmental impact assessment on production and material supply stages of lithium-ion batteries with increasing demands for electric vehicles, J. of Mater Cycles Waste Management, 23, pp.470-479. https://doi.org/10.1007/s10163-020-01166-4
  5. Mani, K.N., 1991 : Electrodialysis water splitting technology, J. Membr. Sci., 58, pp.117-138. https://doi.org/10.1016/S0376-7388(00)82450-3
  6. Yang C., Hu Y., Cao L., et al., 2014 : Performance Optimization of an Electromembrane Reactor for Recycling and Resource Recovery of Desulfurization Residuals, AIChE Journal, 60, pp.2613-2624. https://doi.org/10.1002/aic.14466
  7. Van der Bruggen, B., Lejon, L., Vandecasteele, C., 2003 : Reuse, treatment, and discharge of the concentrate of pressure-driven membrane processes, Environ. Sci. Technol., 37, pp.3733-3738. https://doi.org/10.1021/es0201754
  8. Atia, T.A., Elia, G., Hahn, R., et al., 2019 : Closed-loop hydrometallurgical treatment of end-of-life lithium ion batteries: Towards zero-waste process and metal recycling in advanced batteries, J. Energy Chem, 35, pp.220-227. https://doi.org/10.1016/j.jechem.2019.03.022
  9. Strathmann, H., 2010 : Electrodialysis, a mature technology with a multitude of new applications, Desalination, 264, pp.268-288. https://doi.org/10.1016/j.desal.2010.04.069
  10. C. Huang., T. Xu., 2006 : Electrodialysis with bipolar membranes for sustainable development, Environ. Sci. Technol., 40(17), pp.5223-5243.
  11. Kincl, J., Jiricek, T., Feher, J., et al., 2017 : Electromembrane Processes in Mine Water Treatment, Mine Water and Circular Economy, IMWA, pp.1154-1161.
  12. R. Parnamae., S. Mareev., V. Nikonenko., et al., 2020 : Bipolar membranes: A review on principles, latest developments, and applications, Journal of Membrane Science, Elsevier, Amsterdam.
  13. X. Tongwen, 2002 : Electrodialysis processes with bipolar membranes (EDBM) in environmental protection - a review, Resour. Conserv. Recycl., 37, pp.1-22. https://doi.org/10.1016/S0921-3449(02)00032-0
  14. Strathmann H., 2004 : Ion-Exchange Membrane Separation Processes., Membrane Science and Technology, Volume 9, Elsevier, Amsterdam.
  15. Yeonchul Cho, Kihun Kim, Jaewoo Ahn, et al., 2021 : A Study on Lithium Hydroxide Recovery Using Bipolar Membrane Electrodialysis, Korean J. Met. Mater., 59(4), pp.223-232. https://doi.org/10.3365/KJMM.2021.59.4.223
  16. Jueun Lee, Hongil So, Yeonchul Cho, et al., 2019 : A Study on the Separation and Concentration of Li from Li-Containing Waste Solutions by Electrodialysis, Korean J. Met. Mater., 57(10), pp.656-662. https://doi.org/10.3365/KJMM.2019.57.10.656
  17. Luigi Gurreri, Alessandro Tamburini, Andrea Cipollina, 2020 : Electrodialysis Applications in Wastewater Treatment for Environmental Protection and Resources Recovery : A Systematic Review on Progress and Perspectives, Membranes, 10(7), pp.1-93.
  18. J. Jorissen., K. H. Simmrock, 1991 : The behaviour of ion exchange membranes in electrolysis and electrodialysis of sodium sulphate, J. Applied Electrochemistry, 21, pp.869-876. https://doi.org/10.1007/BF01042453
  19. M. Rakib., Viers Moceteguy., E. Petit., et al., 1999 : Behaviour of Nafion 350 membrane in sodium sulfate electrochemical splitting: continuous process modelling and pilot scale tests, J. Appl. Electrochem., 29, pp.1439-1448. https://doi.org/10.1023/A:1003861413943
  20. Tzanetakis. N., Taama. W., Scott. K., 2002 : Salt splitting in a three-compartment membrane electrolysis cell, Filtration & Separation, 39(3), pp.30-38. https://doi.org/10.1016/S0015-1882(02)80135-5
  21. F. ohman., L. Delin, 2014 : Electrolysis of sodium sulphate - efficient use of saltcake and ESP dust in pulp mills, Aforsk Referensnr, pp.13-347.
  22. B. Pisarska., H. Jaroszek., W. Mikolajczak, et al., 2017 : Application of electro-electrodialysis for processing of sodium sulphate waste solutions containing organic compounds: preliminary study, J. Clean. Prod., pp. 3741-3747.
  23. B. Pisarska., W. Mikolajczak., H. Jaroszek, 2017 : Processing of sodium sulphate solutions using the EED method: from a batch toward a continuous process, Polish Journal of Chemical Technology, 19(1), pp.54-58. https://doi.org/10.1515/pjct-2017-0008
  24. Seung-Hyeon Moon, 2021 : Electrochemical Processes of Ion Exchange Membranes, GIST Press, Gwangju.
  25. Campione, A., Gurreri, L., Ciofalo, M., et al., 2018 : Electrodialysis for water desalination: A critical assessment of recent developments on process fundamentals, models and applications, Desalination, 434, pp.121-160. https://doi.org/10.1016/j.desal.2017.12.044
  26. Sajjad, A.-A., Yunus, M.Y.B.M., Azoddein, A.A.M., et al., 2020 : Electrodialysis Desalination for Water and Wastewater: A Review, Chem. Eng. J., 380(122231), pp.1-54.
  27. Lindstrand, V., Sundstrom, G., Jonsson, A.S., 2000 : Fouling of electrodialysis membranes by organic substances, Desalination, 128, pp.91-102. https://doi.org/10.1016/S0011-9164(00)00026-6
  28. H.J. Lee, S.H. Moon, S.P. Tsai, 2002 : Effects of pulsed electric fields on membrane fouling in electrodialysis of NaC1 solution containing humate, Sep. Purif. Technol., 27, pp.89-95. https://doi.org/10.1016/S1383-5866(01)00167-8
  29. N. Cifuentes-Araya., G. Pourcelly., L. Bazinet, 2011 : Impact of pulsed electric field on electrodialysis process performance and membrane fouling during consecutive demineralization of a model salt solution containing a high magnesium/calcium ratio, J. Colloid Interface Sci., 361(1), pp.79-89. https://doi.org/10.1016/j.jcis.2011.05.044
  30. G. Pourcelly, 2002 : Electrodialysis with Bipolar Membranes: Principles, Optimization, and Applications, Russian Journal of Electrochemistry, 38(8), pp. 919-926. https://doi.org/10.1023/A:1016882216287
  31. I. Miesiac, B. Rukowicz, 2002 : Bipolar Membrane and Water Splitting in Electrodialysis, Electrocatalysis, 13, pp.101-107.
  32. Deuk Ju Kim, Sang Yong Nam, 2013 : Development and Application Trend of Bipolar Membrane for Electrodialysis, Membrane Journal, 23(5), pp.319-331.
  33. Jan Kroupa, Jan Kincl, Jiri Cak, 2014 : Recovery of H2SO4 and NaOH from Na2SO4 by electrodialysis with heterogeneous bipolar membrane, Desalination and Water Treatment, pp.1-9.
  34. Jan Kroupa, 2019 : Study of Electrodialysis with Bipolar Membranes, Theses of the Doctoral Dissertation.
  35. Mani, K.N., Chlanda., F.P., Byszewski. C.H., 1988 : Aquatech membrane technology for recovery of acid/base values from salt streams, Desalination, 68, pp.149-166. https://doi.org/10.1016/0011-9164(88)80051-1
  36. Mani, K.N., 1991 : Electrodialysis water splitting technology, J. Membr. Sci., 58, pp.117-138. https://doi.org/10.1016/S0376-7388(00)82450-3
  37. Didier Raucq, Gerald Pourcelly, Claude Gavach, 1993 : Production of sulphuric acid and caustic soda from sodium sulphate by electromembrane processes, Comparison between electroelectrodialysis and electrodialysis on bipolar membrane, Desalination, 91, pp.163-475. https://doi.org/10.1016/0011-9164(93)80055-R
  38. M. Paleologou, A. Thibault, P-Y. Wong, et al., 1997 : Enhancement of the current efficiency for sodium hydroxide production from sodium sulphate in a two-compartment bipolar membrane electrodialysis system, Separation and Purification Technology, 11, pp.159-171. https://doi.org/10.1016/S1383-5866(97)00018-X
  39. Harato, T., Smith, P., Oraby, E., 2012 : Recovery of soda from bauxite residue by acid leaching and electrochemical processing, Proceedings of the 9th International Alumina Quality Workshop, pp.193-201.
  40. Y. Wei, C. Li, Y. Wang, et al., 2012 : Regenerating sodium hydroxide from the spent caustic by bipolar membrane electrodialysis (BMED), Separation and Purification Technology, 86, pp.49-54. https://doi.org/10.1016/j.seppur.2011.10.019
  41. Y. Wei, Y. Wang, X. Zhang, et al., 2013 : Comparative study on regenerating sodium hydroxide from the spent caustic by bipolar membrane electrodialysis (BMED) and electroelectrodialysis(EED), Separation and Purification Technology, 118, pp.1-5. https://doi.org/10.1016/j.seppur.2013.06.025
  42. Kroupa, J., Cakl, J., Kincl, J., 2015 : Increase the Concentration of Products from Electrodialysis with Heterogeneous Bipolar Membrane.
  43. Kuldeep, W. D. Badenhorst, P. Kauranen, et al., 2021 : Bipolar Membrane Electrodialysis for Sulfate Recycling in the Metallurgical Industries, Membranes, 11(9), 718. https://doi.org/10.3390/membranes11090718
  44. Gao W., Fang Q., Yan H., et al., 2021 : Recovery of Acid and Base from Sodium Sulfate Containing Lithium Carbonate Using Bipolar Membrane Electrodialysis, Membranes, 11(152), pp.1-14.
  45. Jiang G., Li H., Xu M., et al., 2021 : Sustainable reverse osmosis, electrodialysis and bipolar membrane electrodialysis application for cold-rolling wastewater treatment in the steel industry, J. Water Process. Eng., 40, 101968. https://doi.org/10.1016/j.jwpe.2021.101968
  46. Ming Zhu, Binghui Tian, Sheng Luo, et al., 2022 : High-value conversion of waste Na2SO4 by a bipolar membrane electrodialysis metathesis system, Resources, Conservation and Recycling, 186, pp.7-29.
  47. Reig, M., Valderrama, C., Gibert, O., et al., 2016 : Selectrodialysis and bipolar membrane electrodialysis combination for industrial process brines treatment: Monovalentdivalent ions separation and acid and base production, Desalination, 399, pp.88-95. https://doi.org/10.1016/j.desal.2016.08.010
  48. Anh T.K. Tran, Priyanka Mondal, JiuYang Lin, et al., 2015 : Simultaneous regeneration of inorganic acid and base from a metal washing step waste water by bipolarmembrane electrodialysis after pretreatment by crystallization in a fluidized pellet reactor, Journal of Membrane Sci. 473, pp.118-127. https://doi.org/10.1016/j.memsci.2014.09.006
  49. Jae-Hun Kim, Seungbo Ryu, Seung-Hyeon Moon, 2020 The Fabrication of Ion Exchange Membrane and Its Application to Energy Systems, Membrane Journal, 30(2), pp.79-96. https://doi.org/10.14579/MEMBRANE_JOURNAL.2020.30.2.79
  50. F. Hanada, K. Hirayama, N. Ohmura, et al., 1993. US. 05221455.
  51. R. Fu, T. Xu, G. Wang, et al., 2003 : PEG-catalytic water splitting in the interface of a bipolar membrane, J. Colloid Interface Sci., 263, pp. 386-390. https://doi.org/10.1016/S0021-9797(03)00307-2
  52. R. Q. Fu, Y. H. Xue, T. W. Xu, et al., 2005 : Fundamental studies on the intermediate layer of a bipolar membrane part IV. Effect of polyvinyl alcohol (PVA) on water dissociation at the interface of a bipolar membrane, J. Colloid Interface Sci., 285, pp.281-287. https://doi.org/10.1016/j.jcis.2004.11.050
  53. J. Balster, R. Sumbharaju, S. Srikantharajah, et al., Asymmetric bipolar membrane: A tool to improve product purity, J. Membr. Sci., 287, pp. 246-256.
  54. T. Xu, 2002 : Effect of asymmetry in a bipolar membrane on water dissociation - a mathematical analysis, Desalination, 150, pp.65-74. https://doi.org/10.1016/S0011-9164(02)00930-X
  55. A.J. Cisar, A. Gonzalez-Martin, G.D. Hitchens, et al., 1994. US. 5635039A.
  56. G.D. Hitchems, H. Jabs, C.C. Andrews, et al., 1999. US. 6103078A.
  57. J. Hawkins, E. Nyberg, G. Kayser, 2004. US. 7959780B2.
  58. C. Shen, R. Wycisk, P.N. Pintauro, 2017 : High performance electrospun bipolar membrane with a 3D junction, Energy Environ. Sci., 10, pp.1435-1442. https://doi.org/10.1039/C7EE00345E
  59. A. Wang, S. Peng, Y. Wu, et al., 2010 : A hybrid bipolar membrane, J. Membr. Sci., 365(2010), pp.269-275. https://doi.org/10.1016/j.memsci.2010.09.016
  60. B. Bauer, H. Strathmann, F. Effenberger, 1990 : Anionexchange membranes with improved alkaline stability, Desalination, 79, pp.125-144. https://doi.org/10.1016/0011-9164(90)85002-R