Browse > Article
http://dx.doi.org/10.7844/kirr.2022.31.5.3

Application of Electro-membrane for Regeneration of NaOH and H2SO4 from the Spent Na2SO4 Solutions in Metal Recovery Process  

Cho, Yeon-Chul (Department of Advanced Materials Sci. & Eng., Daejin University)
Kim, Ki-Hun (Department of Advanced Materials Sci. & Eng., Daejin University)
Ahn, Jae-Woo (Department of Advanced Materials Sci. & Eng., Daejin University)
Publication Information
Resources Recycling / v.31, no.5, 2022 , pp. 3-19 More about this Journal
Abstract
Electro-membrane technology is a process for separating and purifying substances in aqueous solution by electric energy using an ion exchange membrane with selective permeability, such as electrodialysis (ED) and bipolar electrodialysis (BMED). Electro-membrane technology is attracting attention as an environmental friendly technology because it does not generate by-products during the process and the recovered base or acid can be reused during the process. In this paper, we investigate the principles of ED and BMED technologies and various characteristics and problems according to the cell configuration. In particular, by investigating and analyzing research cases related to the treatment of waste sodium sulfate (Na2SO4), which is generated in large amounts during the metal recovery process.
Keywords
Electro-membrane; Electrodialysis; Bipolar-electrodialysis; $Na_2SO_4$; Zero Liquid Discharge (Z.L.D.);
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Mani, K.N., 1991 : Electrodialysis water splitting technology, J. Membr. Sci., 58, pp.117-138.   DOI
2 Yang C., Hu Y., Cao L., et al., 2014 : Performance Optimization of an Electromembrane Reactor for Recycling and Resource Recovery of Desulfurization Residuals, AIChE Journal, 60, pp.2613-2624.   DOI
3 Van der Bruggen, B., Lejon, L., Vandecasteele, C., 2003 : Reuse, treatment, and discharge of the concentrate of pressure-driven membrane processes, Environ. Sci. Technol., 37, pp.3733-3738.   DOI
4 Atia, T.A., Elia, G., Hahn, R., et al., 2019 : Closed-loop hydrometallurgical treatment of end-of-life lithium ion batteries: Towards zero-waste process and metal recycling in advanced batteries, J. Energy Chem, 35, pp.220-227.   DOI
5 Strathmann, H., 2010 : Electrodialysis, a mature technology with a multitude of new applications, Desalination, 264, pp.268-288.   DOI
6 Reig, M., Valderrama, C., Gibert, O., et al., 2016 : Selectrodialysis and bipolar membrane electrodialysis combination for industrial process brines treatment: Monovalentdivalent ions separation and acid and base production, Desalination, 399, pp.88-95.   DOI
7 Matinde, E., G.S. Simate, S. Ndlovu, 2018 : Mining and metallurgical wastes: A review of recycling and re-use practices, J. S. Afr. Inst. Min. Metall., 118, pp.825-844.
8 C. Huang., T. Xu., 2006 : Electrodialysis with bipolar membranes for sustainable development, Environ. Sci. Technol., 40(17), pp.5223-5243.
9 Kincl, J., Jiricek, T., Feher, J., et al., 2017 : Electromembrane Processes in Mine Water Treatment, Mine Water and Circular Economy, IMWA, pp.1154-1161.
10 O.S.L. Bruinsma, D.J. Branken, T.N. Lemmer, et al., 2021 : Sodium sulfate splitting as zero brine process in a base metal refinery: Screening and optimization in batch mode, Desalination 2021, 511, 115096.   DOI
11 Ahmed, S., Nelson, P.A., Gallagher, K.G., et al., 2017 : Cost and energy demand of producing nickel manganese cobalt cathode material for lithium ion batteries, J. Power Sources 2017, 342, pp.733-740.   DOI
12 Sakunai, T., Ito, L. & Tokai, A., 2021 : Environmental impact assessment on production and material supply stages of lithium-ion batteries with increasing demands for electric vehicles, J. of Mater Cycles Waste Management, 23, pp.470-479.   DOI
13 X. Tongwen, 2002 : Electrodialysis processes with bipolar membranes (EDBM) in environmental protection - a review, Resour. Conserv. Recycl., 37, pp.1-22.   DOI
14 Strathmann H., 2004 : Ion-Exchange Membrane Separation Processes., Membrane Science and Technology, Volume 9, Elsevier, Amsterdam.
15 Jueun Lee, Hongil So, Yeonchul Cho, et al., 2019 : A Study on the Separation and Concentration of Li from Li-Containing Waste Solutions by Electrodialysis, Korean J. Met. Mater., 57(10), pp.656-662.   DOI
16 B. Pisarska., H. Jaroszek., W. Mikolajczak, et al., 2017 : Application of electro-electrodialysis for processing of sodium sulphate waste solutions containing organic compounds: preliminary study, J. Clean. Prod., pp. 3741-3747.
17 R. Parnamae., S. Mareev., V. Nikonenko., et al., 2020 : Bipolar membranes: A review on principles, latest developments, and applications, Journal of Membrane Science, Elsevier, Amsterdam.
18 Seung-Hyeon Moon, 2021 : Electrochemical Processes of Ion Exchange Membranes, GIST Press, Gwangju.
19 Yeonchul Cho, Kihun Kim, Jaewoo Ahn, et al., 2021 : A Study on Lithium Hydroxide Recovery Using Bipolar Membrane Electrodialysis, Korean J. Met. Mater., 59(4), pp.223-232.   DOI
20 F. ohman., L. Delin, 2014 : Electrolysis of sodium sulphate - efficient use of saltcake and ESP dust in pulp mills, Aforsk Referensnr, pp.13-347.
21 Luigi Gurreri, Alessandro Tamburini, Andrea Cipollina, 2020 : Electrodialysis Applications in Wastewater Treatment for Environmental Protection and Resources Recovery : A Systematic Review on Progress and Perspectives, Membranes, 10(7), pp.1-93.
22 J. Jorissen., K. H. Simmrock, 1991 : The behaviour of ion exchange membranes in electrolysis and electrodialysis of sodium sulphate, J. Applied Electrochemistry, 21, pp.869-876.   DOI
23 M. Rakib., Viers Moceteguy., E. Petit., et al., 1999 : Behaviour of Nafion 350 membrane in sodium sulfate electrochemical splitting: continuous process modelling and pilot scale tests, J. Appl. Electrochem., 29, pp.1439-1448.   DOI
24 B. Pisarska., W. Mikolajczak., H. Jaroszek, 2017 : Processing of sodium sulphate solutions using the EED method: from a batch toward a continuous process, Polish Journal of Chemical Technology, 19(1), pp.54-58.   DOI
25 Campione, A., Gurreri, L., Ciofalo, M., et al., 2018 : Electrodialysis for water desalination: A critical assessment of recent developments on process fundamentals, models and applications, Desalination, 434, pp.121-160.   DOI
26 N. Cifuentes-Araya., G. Pourcelly., L. Bazinet, 2011 : Impact of pulsed electric field on electrodialysis process performance and membrane fouling during consecutive demineralization of a model salt solution containing a high magnesium/calcium ratio, J. Colloid Interface Sci., 361(1), pp.79-89.   DOI
27 Tzanetakis. N., Taama. W., Scott. K., 2002 : Salt splitting in a three-compartment membrane electrolysis cell, Filtration & Separation, 39(3), pp.30-38.   DOI
28 Sajjad, A.-A., Yunus, M.Y.B.M., Azoddein, A.A.M., et al., 2020 : Electrodialysis Desalination for Water and Wastewater: A Review, Chem. Eng. J., 380(122231), pp.1-54.
29 Lindstrand, V., Sundstrom, G., Jonsson, A.S., 2000 : Fouling of electrodialysis membranes by organic substances, Desalination, 128, pp.91-102.   DOI
30 H.J. Lee, S.H. Moon, S.P. Tsai, 2002 : Effects of pulsed electric fields on membrane fouling in electrodialysis of NaC1 solution containing humate, Sep. Purif. Technol., 27, pp.89-95.   DOI
31 I. Miesiac, B. Rukowicz, 2002 : Bipolar Membrane and Water Splitting in Electrodialysis, Electrocatalysis, 13, pp.101-107.
32 Deuk Ju Kim, Sang Yong Nam, 2013 : Development and Application Trend of Bipolar Membrane for Electrodialysis, Membrane Journal, 23(5), pp.319-331.
33 Jan Kroupa, 2019 : Study of Electrodialysis with Bipolar Membranes, Theses of the Doctoral Dissertation.
34 Mani, K.N., Chlanda., F.P., Byszewski. C.H., 1988 : Aquatech membrane technology for recovery of acid/base values from salt streams, Desalination, 68, pp.149-166.   DOI
35 Didier Raucq, Gerald Pourcelly, Claude Gavach, 1993 : Production of sulphuric acid and caustic soda from sodium sulphate by electromembrane processes, Comparison between electroelectrodialysis and electrodialysis on bipolar membrane, Desalination, 91, pp.163-475.   DOI
36 M. Paleologou, A. Thibault, P-Y. Wong, et al., 1997 : Enhancement of the current efficiency for sodium hydroxide production from sodium sulphate in a two-compartment bipolar membrane electrodialysis system, Separation and Purification Technology, 11, pp.159-171.   DOI
37 Y. Wei, C. Li, Y. Wang, et al., 2012 : Regenerating sodium hydroxide from the spent caustic by bipolar membrane electrodialysis (BMED), Separation and Purification Technology, 86, pp.49-54.   DOI
38 Y. Wei, Y. Wang, X. Zhang, et al., 2013 : Comparative study on regenerating sodium hydroxide from the spent caustic by bipolar membrane electrodialysis (BMED) and electroelectrodialysis(EED), Separation and Purification Technology, 118, pp.1-5.   DOI
39 Gao W., Fang Q., Yan H., et al., 2021 : Recovery of Acid and Base from Sodium Sulfate Containing Lithium Carbonate Using Bipolar Membrane Electrodialysis, Membranes, 11(152), pp.1-14.
40 Kuldeep, W. D. Badenhorst, P. Kauranen, et al., 2021 : Bipolar Membrane Electrodialysis for Sulfate Recycling in the Metallurgical Industries, Membranes, 11(9), 718.   DOI
41 G. Pourcelly, 2002 : Electrodialysis with Bipolar Membranes: Principles, Optimization, and Applications, Russian Journal of Electrochemistry, 38(8), pp. 919-926.   DOI
42 G.D. Hitchems, H. Jabs, C.C. Andrews, et al., 1999. US. 6103078A.
43 J. Balster, R. Sumbharaju, S. Srikantharajah, et al., Asymmetric bipolar membrane: A tool to improve product purity, J. Membr. Sci., 287, pp. 246-256.
44 T. Xu, 2002 : Effect of asymmetry in a bipolar membrane on water dissociation - a mathematical analysis, Desalination, 150, pp.65-74.   DOI
45 A.J. Cisar, A. Gonzalez-Martin, G.D. Hitchens, et al., 1994. US. 5635039A.
46 J. Hawkins, E. Nyberg, G. Kayser, 2004. US. 7959780B2.
47 C. Shen, R. Wycisk, P.N. Pintauro, 2017 : High performance electrospun bipolar membrane with a 3D junction, Energy Environ. Sci., 10, pp.1435-1442.   DOI
48 Jan Kroupa, Jan Kincl, Jiri Cak, 2014 : Recovery of H2SO4 and NaOH from Na2SO4 by electrodialysis with heterogeneous bipolar membrane, Desalination and Water Treatment, pp.1-9.
49 A. Wang, S. Peng, Y. Wu, et al., 2010 : A hybrid bipolar membrane, J. Membr. Sci., 365(2010), pp.269-275.   DOI
50 B. Bauer, H. Strathmann, F. Effenberger, 1990 : Anionexchange membranes with improved alkaline stability, Desalination, 79, pp.125-144.   DOI
51 Mani, K.N., 1991 : Electrodialysis water splitting technology, J. Membr. Sci., 58, pp.117-138.   DOI
52 Harato, T., Smith, P., Oraby, E., 2012 : Recovery of soda from bauxite residue by acid leaching and electrochemical processing, Proceedings of the 9th International Alumina Quality Workshop, pp.193-201.
53 Kroupa, J., Cakl, J., Kincl, J., 2015 : Increase the Concentration of Products from Electrodialysis with Heterogeneous Bipolar Membrane.
54 Ming Zhu, Binghui Tian, Sheng Luo, et al., 2022 : High-value conversion of waste Na2SO4 by a bipolar membrane electrodialysis metathesis system, Resources, Conservation and Recycling, 186, pp.7-29.
55 Anh T.K. Tran, Priyanka Mondal, JiuYang Lin, et al., 2015 : Simultaneous regeneration of inorganic acid and base from a metal washing step waste water by bipolarmembrane electrodialysis after pretreatment by crystallization in a fluidized pellet reactor, Journal of Membrane Sci. 473, pp.118-127.   DOI
56 Jae-Hun Kim, Seungbo Ryu, Seung-Hyeon Moon, 2020 The Fabrication of Ion Exchange Membrane and Its Application to Energy Systems, Membrane Journal, 30(2), pp.79-96.   DOI
57 F. Hanada, K. Hirayama, N. Ohmura, et al., 1993. US. 05221455.
58 R. Q. Fu, Y. H. Xue, T. W. Xu, et al., 2005 : Fundamental studies on the intermediate layer of a bipolar membrane part IV. Effect of polyvinyl alcohol (PVA) on water dissociation at the interface of a bipolar membrane, J. Colloid Interface Sci., 285, pp.281-287.   DOI
59 R. Fu, T. Xu, G. Wang, et al., 2003 : PEG-catalytic water splitting in the interface of a bipolar membrane, J. Colloid Interface Sci., 263, pp. 386-390.   DOI
60 Jiang G., Li H., Xu M., et al., 2021 : Sustainable reverse osmosis, electrodialysis and bipolar membrane electrodialysis application for cold-rolling wastewater treatment in the steel industry, J. Water Process. Eng., 40, 101968.   DOI