• Title/Summary/Keyword: Electrically Small Antenna

Search Result 25, Processing Time 0.024 seconds

Investigation of 3D Printed Electrically Small Folded Spherical Meander Wire Antenna

  • Kong, Myeongjun;Shin, Geonyeong;Lee, Su-Hyeon;Yoon, Ick-Jae
    • Journal of electromagnetic engineering and science
    • /
    • v.17 no.4
    • /
    • pp.228-232
    • /
    • 2017
  • The radiation properties and fabrication precautions of a 3D printed, electrically small folded spherical meander wire monopole antenna are investigated. The antenna is self-resonant and shows sufficiently high radiation efficiency at an electrical size ka of 0.4, with the radiation quality factor Q approaching the lower physical bound. In antenna fabrication, the possible structural deformation due to gravity is examined before the antenna frame is 3D-printed. The required conductivity is achieved by multiple manual paintings of a silver paste. The radiation efficiency and pattern show very good agreement with the computed expectations, whereas the resonant frequency deviates by 11.8%. The method to minimize such a fabrication error when using 3D printing technology for wire antennas is discussed.

Impedance Matching of Electrically Small Antenna with Ni-Zn Ferrite Film

  • Lee, Jaejin;Hong, Yang-Ki;Lee, Woncheol;Park, Jihoon
    • Journal of Magnetics
    • /
    • v.18 no.4
    • /
    • pp.428-431
    • /
    • 2013
  • We demonstrate that a partial loading of $Ni_{0.5}Zn_{0.5}Fe_2O_4$ (Ni-Zn ferrite) film remarkably improves impedance matching of electrically small $Ba_3Co_2Fe_{24}O_{41}$ ($Co_2Z$) hexaferrite antenna. A 3 ${\mu}m$ thick Ni-Zn ferrite film was deposited on a silicon wafer by the electrophoresis deposition process and post-annealed at $400^{\circ}C$. The fabricated Ni-Zn ferrite film has saturation magnetization of $268emu/cm^3$ and coercivity of 89 Oe. A partial loading of the Ni-Zn ferrite film on the $Co_2Z$ hexaferrite helical antenna increases antenna return loss to 24.7 dB from 9.0 dB of the $Co_2Z$ antenna. Experimental results show that impedance matching and maximum input power transmission to the antenna without additional matching elements can be realized, while keeping almost the same size as the $Co_2Z$ antenna size.

Electrically Small Square Loop Antenna with SRR (Split Ring Resonator) Cover Structure (SRR (Split Ring Resonator) 덮개 구조를 갖는 전기적 소형 정사각형 루프 안테나)

  • Kim, Yong-Jin;Kim, Jung-Han;Lee, Hong-Min
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.6
    • /
    • pp.52-58
    • /
    • 2008
  • In this paper, electrically small square loop antenna with SRR (Split Ring Resonator) cover structure is built and tested. The proposed antenna has very small size, ka = 0.34 by Chu limit. The experimental result shows that the resonant frequency and impedance bandwidth($VSWR{\leq}2$) are 906MHz and 5.8MHz (901.7 - 907.5MHz), respectively. The proposed antenna is matched and designed by equivalent circuit model. The proposed antenna is fabricated simple structure without additional matching network and printed on a Teflon substrate without ground plane. Therefore, it has advantages of low cost, small size, and light weight and will be applied to wireless communication systems where small antennas are required.

Design of an Electrically Small Antenna Using Metamaterial Structure (메타물질 구조를 이용한 전기적 소형 안테나의 설계)

  • Lee, Hong-Min
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.3 no.1
    • /
    • pp.24-30
    • /
    • 2010
  • In this paper, a novel electrically small monopole type resonant antenna is proposed. The very short length monopole (${\iota}{\approx}{\lambda}_g/15$ ) acts as a capacitive element and the slot on the ground structure acts as an inductive element, hence the combined system with these two elements thus form an LC resonator. The equivalent circuit model of the antenna structure was used to analysis and qualify the design correctness. Although the proposed antenna has very small size, it shows good performances. The measured maximum gain and radiation efficiency of the fabricated antenna at the frequency of 2.1 GHz was 3.6 dBi and 77.8 %, respectively.

  • PDF

Non-Foster Matching Circuit for Wideband Anti-Jamming Small GPS Antennas (광대역 항재밍 소형 GPS 안테나용 비 포스터 정합회로)

  • Ha, Sang-Gyu;Jung, Kyung-Young
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.12
    • /
    • pp.1112-1115
    • /
    • 2016
  • Global Positioning System(GPS) is a useful system used in both civilian and military applications. However, the signal of GPS is susceptible to jamming attacks due to low receive sensitivity, since the signals come from the satellite located at over 20,000 km above the earth. In this paper, we have conducted a preceding research on a non-Foster matching circuit that efficiently matches an electrically ultra-small GPS antenna. Electrically Small Antennas(ESAs) are inefficient radiators and are difficult to match in wideband due to extremely high quality factor. In order to match small GPS antenna in wideband, a non-Foster matching circuit for a small GPS antenna was designed. A negative impedance converter circuit consisting of Linvill's cross-coupled pair transistors was fabricated and its stability was verified by the time-domain stability analysis. In addition, anechoic chamber measurements show that the non-Foster matching circuit for small GPS antenna can lead bore-sight gain improvement by more than 17 dB.

Analysis of Forced Resonance Characteristics of Electrically Small Dipole Antennas and Its Application to Measurements of Unknown Frequency (전기적 소형다이폴 안테나의 강제 공진특성 해석과 주파수 측정에의 응용 가능성 연구)

  • Ki-Chai Kim
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.8 no.3
    • /
    • pp.264-272
    • /
    • 1997
  • This paper presents the analysis of forced resonance characteristics of electrically small dipole antenna loaded with external element and its application to measuring unknown frequencies. The method of moments with Galerkin's procedure is used to determine the current distribution of the antenna. To derive the determinantal equation of resonance lengths at a given frequency, small antennas with the reactance loaded can be treated as a two-port network. Numerical results show that the forced resonance of the electrically small dipole antenna loaded with reactance can be easily obtained by controlling the reactance for the series resonance as well as for the parallel resonance. It is demonstrated that the forced resonance characteristics can also be applied to the measurement of unknown frequencies.

  • PDF

Electrically Small Eighth-Mode Substrate-Integrated Waveguide(EMSIW) Antenna Loading Complementary Split Ring Resonator(CSRR) (상보적 분할 링 공진기를 이용한 전기적으로 작은 1/8 모드 기판 집적형 도파관 안테나)

  • Kang, Hyunseong;Sam, Somarith;Lim, Sungjoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.7
    • /
    • pp.686-693
    • /
    • 2013
  • Based on a substrate integrated waveguide(SIW) and a complementary split ring resonator(CSRR), electrically small antennas are proposed in this paper. Antenna's electrical size is reduced by introducing both CSRR and the eighth-mode substrate integrated waveguide(EMSIW). The EMSIW occupies only 12.5 % of the conventional SIW at the same dominant resonant frequency. In addition, the resonant frequency of the antenna is varied by rotating the CSRR on the EMSIW while keeping the same radiation patterns. The resonant frequency is changed from 4.74 GHz to 5.07 GHz by varying orientation of the CSRR from 0 to 360 degree. Unidirectional radiation patterns are observed and the measured peak gains are from 4.50 to 5.92 dBi.

Antenna Measurement on Cylindrical Surface in Fresnel Region Using Direct Far-Field Measurement System

  • Oh, Soon-Soo;Kim, Joung-Myoun;Yun, Jae-Hoon
    • ETRI Journal
    • /
    • v.29 no.2
    • /
    • pp.135-142
    • /
    • 2007
  • The small anechoic chambers built by many small-/medium-sized companies and universities present difficulties in testing electrically large antennas because the chamber size cannot satisfy the far-field criterion of large antennas. In this paper, a method for Fresnel-region measurement on a cylindrical surface with variation of the measurement height is proposed and verified by both calculations and experiments. We implement the proposed method using a direct far-field measurement system by adding a few supporting structures. The results show good accuracy.

  • PDF

Electrically Small Antenna with Bandwidth over 2/Q Limit (2/Q 대역폭 한계치를 넘는 소형 안테나 설계)

  • Lee, Chul-Hee;Choo, Ho-Sung;Park, Ik-Mo
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2005.11a
    • /
    • pp.255-258
    • /
    • 2005
  • In this paper, we verify that the bandwidth of the optimized disk-loaded monopole antenna with electromagnetically coupled feed obtained using a genetic algorithm is broader than the theoretical bandwidth limit of 2/Q by simulation as well as by measurement. The measured bandwidth of the optimized antenna (kr : 0.599) is about 42% from 380 MHz to 580 MHz (VSWR<5.8). The efficiency measurement of the antenna is over 90% for the frequency band of operation.

  • PDF