DOI QR코드

DOI QR Code

Electrically Small Eighth-Mode Substrate-Integrated Waveguide(EMSIW) Antenna Loading Complementary Split Ring Resonator(CSRR)

상보적 분할 링 공진기를 이용한 전기적으로 작은 1/8 모드 기판 집적형 도파관 안테나

  • Kang, Hyunseong (School of Electrical and Electronics Engineering, Chung-Ang University) ;
  • Sam, Somarith (School of Electrical and Electronics Engineering, Chung-Ang University) ;
  • Lim, Sungjoon (School of Electrical and Electronics Engineering, Chung-Ang University)
  • 강현성 (중앙대학교 전자전기공학부) ;
  • ;
  • 임성준 (중앙대학교 전자전기공학부)
  • Received : 2013.04.16
  • Accepted : 2013.07.18
  • Published : 2013.07.31

Abstract

Based on a substrate integrated waveguide(SIW) and a complementary split ring resonator(CSRR), electrically small antennas are proposed in this paper. Antenna's electrical size is reduced by introducing both CSRR and the eighth-mode substrate integrated waveguide(EMSIW). The EMSIW occupies only 12.5 % of the conventional SIW at the same dominant resonant frequency. In addition, the resonant frequency of the antenna is varied by rotating the CSRR on the EMSIW while keeping the same radiation patterns. The resonant frequency is changed from 4.74 GHz to 5.07 GHz by varying orientation of the CSRR from 0 to 360 degree. Unidirectional radiation patterns are observed and the measured peak gains are from 4.50 to 5.92 dBi.

본 논문은 기판 집적형 도파관(SIW: Substrate Integrated Waveguide)와 상보적 분할링 공진기(CSRR: Complementary Split Ring Resonator)를 기반으로 한 전기적으로 작은 안테나를 제안한다. 안테나의 전기적 크기는 CSRR과 기존 SIW의 1/8크기인 Eighth-Mode Substrate Integrated Waveguide(EMSIW)를 적용하여 줄일 수 있었다. EMSIW는 기존의 SIW와 비교하였을 때 공진 주파수는 유지하면서 단지 12.5 %의 크기를 차지한다. 또한, EMSIW 안에 CSRR을 회전함으로써 안테나의 방사 특성을 유지하면서 공진 주파수를 바꿀 수 있었다. CSRR을 $0^{\circ}$부터 $360^{\circ}$까지 회전시켜 공진 주파수를 4.74 GHz에서 5.07 GHz까지 변화를 줄 수 있었다. 단향성 방사 패턴이 발생하며, 그 최대 이득은 4.5 dBi에서 5.92 dBi로 관측되었다.

Keywords

References

  1. P. L. Chi, R. Waterhouse, and T. Itoh, "Antenna miniaturization using slow wave enhancement factor form loaded transmission line models", IEEE Trans. Antennas Propag., vol. 59, no. 1, pp. 48-57, Jan. 2011. https://doi.org/10.1109/TAP.2010.2090452
  2. C. R. Rowell, R. D. Murch, "A capacitively loaded PIFA for compact mobile telephone headsets", IEEE Trans. Antennas Propag., vol. 45, no. 5, pp. 837-842, May 1997. https://doi.org/10.1109/8.575634
  3. K. Takahagi, Y. Otsu, and E. Sano, "2.45 GHz high- gain electrically small antenna with composite right/ left-handed ladder structure", Electronics Letters, vol. 48, no. 16, pp. 971-972, Aug. 2012. https://doi.org/10.1049/el.2012.0770
  4. D. Deslandes, K. Wu, "Single-substrate integration technique of planar circuits and waveguide filters", IEEE Trans. Microw. Theory Tech., vol. 51, no. 2, pp. 593-596, Feb. 2003. https://doi.org/10.1109/TMTT.2002.807820
  5. F. Xu, K. Wu, "Guided-wave and leakage characteristics of substrate integrated waveguide", IEEE Microw. Theory Tech., vol. 53, no. 1, pp. 66-73, Jan. 2005. https://doi.org/10.1109/TMTT.2004.839303
  6. D. Stephens, P. R. Young, and I. D. Robertson, "Wband substrate integrated waveguide slot antenna", Electronics Letters, vol. 41, no. 4, pp. 165-167, Feb. 2005. https://doi.org/10.1049/el:20057682
  7. W. Hong, B. Liu, Y. Wang, Q. Lai, H. Tang, X. X. Yin, Y. D. Dong, Y. Zhang, and K. Wu, "Half mode substrate integrated waveguide: a new guided wave structure for microwave and millimeter wave application", Presented at the Joint 31st Int. Infrared Millimeter Waves Conf. and 14th Int. Terahertz Electron. Conf., Shanghai, China, Sep. 2006.
  8. Y. J. Cheng, W. Hong, and K. Wu, "Millimeterwave half mode substrate integrated waveguide frequency scanning antenna with quadri-polarization", IEEE Trans. Antennas Propag., vol. 58, no. 6, pp. 1848-1855, Jun. 2010. https://doi.org/10.1109/TAP.2010.2046844
  9. Q. Xin, F. -S. Zhang, B. -H. Sun, Y. -L. Zou, and Q. -Z. Liu, "Yagi-Uda antenna with small size for vehicles", Electron. Lett., 47(7), pp. 428-430, 2011. https://doi.org/10.1049/el.2011.0148
  10. Y. D. Dong, T. Itoh, "Composite right/left-handed substrate integrated waveguide and half mode substrate integrated waveguide leaky-wave structures", IEEE Trans. Antennas Propag., vol. 59, no. 3, pp. 767-775, Mar. 2011. https://doi.org/10.1109/TAP.2010.2103025
  11. B. Liu, W. Hong, Y. Q. Wang, Q. H. Lai, and K. Wu, "Half mode substrate integrated waveguide (HMSIW) 3-dB coupler", IEEE Microw. Wireless Compon. Lett., vol. 17, no. 1, pp. 22-24, Jan. 2007. https://doi.org/10.1109/LMWC.2006.887244
  12. N. Grigoropoulos, B. Sanz-Izquierdo, and P. R. Young, "Substrate integrated folded waveguides (SIFW) and filters", IEEE Microw. Wireless Compon. Lett., vol. 15, no. 12, pp. 829-831, Dec. 2005. https://doi.org/10.1109/LMWC.2005.860027
  13. S. Zhang, T. J. Bian, Y. Zhai, W. Liu, G. Yang, and F. L. Liu, "Quarter substrate integrated waveguide resonator applied to fractal-shaped BPFs", Microw. Journal Freq. Matters, May 2012.
  14. Y. D. Dong, T. Itoh, "Miniaturized substrate integrated waveguide slot antennas based on negative order resonance", IEEE Trans. Antennas Propag., vol. 58, no. 12, pp. 3856-3864, Dec. 2010. https://doi.org/10.1109/TAP.2010.2078449
  15. J. Choi, S. Lim, "Complementary split ring resonator( CSRR)-loaded substrate integrated waveguide (SIW) metamaterial antenna", IEICE Trans. Commun., vol. E95b, no. 1, pp. 304-307, Jan. 2012.
  16. D. M. Pozar, Microwave Engineering, 3rd Ed. Hoboken, NJ: Wiley, ch. 6.3 & ch. 6.7, 2005.