• Title/Summary/Keyword: Electrical load

Search Result 6,127, Processing Time 0.026 seconds

Contigency Ranking Technique Using Line Capacity Calculation Method (선로용량 산정법을 이용한 상정사고 선택)

  • Park, Kyu-Hong;Jung, Jai-Kil;Hyun, Seung-Bum;Lee, In-Yong;Jung, In-Hak
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.285-288
    • /
    • 2000
  • This paper presents a technique for contingency ranting using line capacity calculation method and outage distribution factors(LODF) which are established by generation shift distribution factors from DC load flow solutions. By using the LODF, the line flow can be calculated a ccording to the modification of base load flow if the contingency occur. To obtain contingency ranting, maximum power tansferred to the load is obtained when load impedance $Z_r$ equal to line impedance $Z_s$. ( $Z_r$/ $Z_s$=1) The proposed algorithm has been validated in tests on a 6-bus test system.

  • PDF

Smart Air Condition Load Forecasting based on Thermal Dynamic Model and Finite Memory Estimation for Peak-energy Distribution

  • Choi, Hyun Duck;Lee, Soon Woo;Pae, Dong Sung;You, Sung Hyun;Lim, Myo Taeg
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.559-567
    • /
    • 2018
  • In this paper, we propose a new load forecasting method for smart air conditioning (A/C) based on the modified thermodynamics of indoor temperature and the unbiased finite memory estimator (UFME). Based on modified first-order thermodynamics, the dynamic behavior of indoor temperature can be described by the time-domain state-space model, and an accurate estimate of indoor temperature can be achieved by the proposed UFME. In addition, a reliable A/C load forecast can be obtained using the proposed method. Our study involves the experimental validation of the proposed A/C load forecasting method and communication construction between DR server and HEMS in a test bed. Through experimental data sets, the effectiveness of the proposed estimation method is validated.

Development of Evaluation Method for Transmission Marginal Loss Factors Considering the Electrical Distance (전기적인 거리를 고려한 한계송전손실계수 산정 방법론 개발)

  • Park, Jong-Bae;Lee, Ki-Song;Lee, Chan-Joo;Shin, Joong-Rin
    • Proceedings of the KIEE Conference
    • /
    • 2003.11a
    • /
    • pp.488-490
    • /
    • 2003
  • This paprer presents the evlauation method for transmission marginal loss factors(MLFs) considering the electrical distance. Generally, MLFs are represented as the sensitivity of transmission losses, which is computed from the change of generation by the change of the load. MLFs are classified as load-focused MLFs and generator-focused MLFs. The existing evaluation method for generator focused MLFs has the limit not reflecting the characteristic of power systems since the method has been introduced the assumption which the output of a generator is supplied to all of the load buses on the power system. Therefore, to overcome the limit of evaluation method for generator-focused MLFs, we have applied the process, which it approximately can find the load buses that supplied a generator to the method. We have applied the proposed method to the simple 5-bus system because the proposed method is not analytic but the hybrid method incorporated the Kirschen and Bialek's algorithm to the existing analytic method to find the load buses supplied by a generator.

  • PDF

A Novel Control Algorithm of a Three-phase Four-wire PV Inverter with Imbalance Load Compensation Function

  • Le, Dinh-Vuong;Kim, Chang-Soon;Go, Byeong-Soo;Park, Minwon;Yu, In-Keun
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.3
    • /
    • pp.1131-1137
    • /
    • 2018
  • In this paper, the authors suggest a new control algorithm for a three-phase four-wire photovoltaic (PV) inverter with imbalance load compensation function using conventional proportional-integral (PI) controllers. The maximum power of PV panel is calculated by the MPPT control loop. The reference varying signals of current controllers are transformed to two different rotating frames where they become constant signals. Then simple PI controllers are applied to achieve zero steady-state error of the controllers. The proposed control algorithm are modeled and simulated with imbalance load configuration to verify its performance. The simulation results show that the maximum PV power is transferred to the grid and the imbalance power is compensated successfully by the proposed control algorithm. The inverter has a fast response (~4 cycles) during the transient period. The proposed control algorithm can be effectively utilized to the three-phase four-wire inverter with imbalance load compensation function.

Multiple-Load Induction Cooking Application with Three-Leg Inverter Configuration

  • Sharath Kumar, P.;Vishwanathan, N.;Murthy, Bhagwan K.
    • Journal of Power Electronics
    • /
    • v.15 no.5
    • /
    • pp.1392-1401
    • /
    • 2015
  • Inverter configurations for multiple-load induction cooking applications need development. Inverter configurations for induction cooking applications are used in home appliances based on single coil inverters. For multiple-load configurations, multiple coils are used. They require proper inverters, which provide independent control for each load and have fewer components. This paper presents a three-leg inverter configuration for three load induction cooking applications. Each induction coil powers one induction cooking load. This configuration operates with constant switching frequency and powers individual loads. The output power of the required load is controlled with a phase-shift control technique. This configuration is simulated and experimentally tested with three induction loads. The simulation and experimental results are in good agreement. This configuration can be extended to more loads.

Analysis of Impedance Performance for Condenser by Harmonic Current Source (고조파 전류원에 의한 콘덴서 임피던스 특성 해석)

  • Kim, Jong-Gyeum;Park, Young-Jeen
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.4
    • /
    • pp.57-64
    • /
    • 2011
  • Most of the user has been used linear load and non-linear load. The former is usually inductive load which is needed power factor compensation, the latter is power conversion system device. Actually two kinds of load is used together in the customer application. Generally capacitor is used for power-factor compensation of inductive load and reduction harmonics of non linear load with reactor. Non-linear load generates harmonic current for its energy conversion process. If harmonic current pass along the low impedance side of distribution system, the magnification of voltage and current is appeared by the series and parallel resonance. As a result, condenser has received a bitter electrical stress by the harmonic component. In this paper, we analyzed that how resonance is changed by the 5-th harmonic current pattern and proposed an alternative plan for non-magnification.

Parameters Estimation Characteristics of Five-Phase Squirrel-Cage Induction Motor within Over Current Load (과전류 부하에서 5상 농형 유도전동기의 정수 특성)

  • Kim, Min-Huei
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.7
    • /
    • pp.38-46
    • /
    • 2015
  • This paper propose a variable parameter estimations for variable over current load of five-phase squirrel-cage induction motor(IM) to servo control system. In order to high performance control of AC motor using a field oriented control(FOC) and direct torque control(DTC) algorithm, there are required precise motor parameters for slip calculation, flux observer, controller gain, torque command of current components, rotor position, speed estimation, and so on. We are suggest a analyzed estimation results of the motor parameters that developing five-phase squirrel-cage IM have a stator of concentrated winding for experimental within variable over current load at rated input frequency. There are results of stator winding measurement, no-load test, locked-rotor test, variable over current load test, and estimated parameters of equivalent circuits using manufactured experimental apparatus by IEEE Standard Test Procedure for Polyphase Induction Motors and Generators 112-2004.

Load Shedding Algorithm Using Linear Programming for Congestion Problems by a Major Contingency

  • Shin Ho-Sung;Song Kyung-Bin
    • KIEE International Transactions on Power Engineering
    • /
    • v.5A no.4
    • /
    • pp.371-377
    • /
    • 2005
  • Congestion problems of transmission lines are very important research issues in power system operations. Load curtailment is one of the ways to solve congestion problems by a major contingency. A systematic and effective mechanism for load shedding has been developed by investigating congestion distribution factors and the direct load control program. In this paper, a load shedding algorithm using linear programming for congestion problems by a major contingency is presented. In order to show the effectiveness of the proposed algorithm, it has been tested on the 6-bus sample system and the power system of Korea, and their results are presented.

Mitigation of Negative Impedance Instabilities in a DC/DC Buck-Boost Converter with Composite Load

  • Singh, Suresh;Rathore, Nupur;Fulwani, Deepak
    • Journal of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.1046-1055
    • /
    • 2016
  • A controller to mitigate the destabilizing effect of constant power load (CPL) is proposed for a DC/DC buck-boost converter. The load profile has been considered to be predominantly of CPL type. The negative incremental resistance of the CPL tends to destabilize the feeder system, which may be an input filter or another DC/DC converter. The proposed sliding mode controller aims to ensure system stability under the dominance of CPL. The effectiveness of the controller has been validated through real-time simulation studies and experiments under various operating conditions. The controller has been demonstrated to be robust with respect to variations in supply voltage and load and capable of mitigating instabilities induced by CPL. Furthermore, the controller has been validated using all possible load profiles, which may arise in modern-day DC-distributed power systems.

Induction Motor with Adjustable Windings for High Efficiency Drive in Light Load Operation

  • Zhang, Y.
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.508-513
    • /
    • 2014
  • Heavy load start but light load operation is a common case in practical drive applications. When an induction motor is employed for such applications, its rated power is usually chosen according to the heavy load start. Then, during light load operation, its efficiency and power factor are low. To solve this problem, it is proposed to adjust the motor windings from the startup to the normal operation conditions. In this paper, arrangement of the adjustable windings is introduced, air gap field with different windings is investigated, and steady state operation performance under various loads is examined. It can be seen that by using proper winding arrangement both startup and operation performances are satisfactory.