Browse > Article
http://dx.doi.org/10.6113/JPE.2015.15.5.1392

Multiple-Load Induction Cooking Application with Three-Leg Inverter Configuration  

Sharath Kumar, P. (Department of Electrical Engineering, National Institute of Technology Warangal)
Vishwanathan, N. (Department of Electrical Engineering, National Institute of Technology Warangal)
Murthy, Bhagwan K. (Department of Electrical Engineering, National Institute of Technology Warangal)
Publication Information
Journal of Power Electronics / v.15, no.5, 2015 , pp. 1392-1401 More about this Journal
Abstract
Inverter configurations for multiple-load induction cooking applications need development. Inverter configurations for induction cooking applications are used in home appliances based on single coil inverters. For multiple-load configurations, multiple coils are used. They require proper inverters, which provide independent control for each load and have fewer components. This paper presents a three-leg inverter configuration for three load induction cooking applications. Each induction coil powers one induction cooking load. This configuration operates with constant switching frequency and powers individual loads. The output power of the required load is controlled with a phase-shift control technique. This configuration is simulated and experimentally tested with three induction loads. The simulation and experimental results are in good agreement. This configuration can be extended to more loads.
Keywords
Induction cooking; Multiple-loads; Phase shift control;
Citations & Related Records
연도 인용수 순위
  • Reference
1 V. M. Primiani, S. Kovyryalov, and G. Cerri, “Rigorous electromagnetic model of an induction cooking system,” IET Trans. Science, Meas. & Technol., Vol. 6, No. 4, pp. 238-246, Jul. 2012.   DOI
2 C. Carretero, O. Lucia, J. Acero, R. Alonso, and J. M. Burdio, “Frequency-dependent modelling of domestic induction heating systems using numerical methods for accurate time-domain simulation,” IET Trans. Power Electron., Vol. 5, No. 8, pp. 1291-1297, Sep. 2012.   DOI
3 L. C. Meng, K. W. E. Cheng, K. W. Chan, and Y. Lu, “Variable turn pitch coils design for heating performance enhancement of commercial induction cooker,” IET Trans. Power Electron., Vol. 5, No. 1, pp. 134-141, Jan. 2012.   DOI
4 J. Acero, C. Carretero, R. Alonso, and J. M. Burdio, “Quantitative evaluation of induction efficiency in domestic induction heating applications,” IEEE Trans. Magn., Vol. 49, No. 4, pp. 1382-1389, Apr. 2013.   DOI
5 J. Acero, C. Carretero, I. Millan, O. Lucia, R. Alonso, and J. M. Burdio, “Analysis and modeling of planar concentric windings forming adaptable-diameter burners for induction heating appliances,” IEEE Trans. Power Electron., Vol. 26, No. 5, pp. 1546-1558, May 2011.   DOI
6 O. Jimenez, O. Lucia, I. Urriza, L. A. Barragan, P. Mattavelli, and D. Boroyevich, “An FPGA-based gain-scheduled controller for resonant converters applied to induction cooktops,” IEEE Trans. Power Electron., Vol. 29, No. 4, pp. 2143-2152, Apr. 2014.   DOI
7 J. M. Burdio, F. Monterde, J. R. Garcia, L. A. Barragan, and A. Martinez, “A two-output series-resonant inverter for induction-heating cooking appliances,” IEEE Trans. Power Electron., Vol. 20, No. 4, pp. 815-822, Jul. 2005.   DOI
8 S. Zenitani, M. Okamoto, E. Hiraki, and T. Tanaka, “A charge boost type multi output full bridge high frequency soft switching inverter for IH cooking appliance,” 14th International Power Electronics and Motion Control Conference (EPE-PEMC), pp. T2-127 - T2-133, 2010.
9 O. Lucia, J. M. Burdio, I. Millan, J. Acero, D. Puyal, “Load-adaptive control algorithm of half-bridge series resonant inverter for domestic induction heating,” IEEE Trans. Ind. Electron., Vol. 56, No. 8, pp. 3106-3116, Aug. 2009.   DOI
10 O. Lucia, J. M. Burdio, L. A. Barragan, C. Carretero, and J. Acero, “Series resonant multi-inverter with discontinuous-mode control for improved light-load operation,” IEEE Trans. Ind. Electron., Vol. 58, No. 11, pp. 5163-5171, Nov. 2011.   DOI
11 O. Lucia, I. Urriza, Luis A. Barragan, D. Navarro, O. Jimenez, and J. M. Burdio, “Real time FPGA-based hardware in the loop simulation test bench applied to multiple output power converters,” IEEE Trans. Ind. Appl., Vol. 47, No. 2, pp. 853-860, Mar./Apr. 2011.   DOI
12 O. Lucia, C. Carretero, J. M. Burdio, J. Acero, and F. Almazan, “Multiple-output resonant matrix converter for multiple induction heaters,” IEEE Trans. Ind. Appl., Vol. 48, No. 4, pp. 1387-1396, Jul./Aug. 2012.   DOI
13 I. Sheikhian, N. Kaminski, S. Vob, W. Scholz, and E. Herweg, “Optimisation of the reverse conducting IGBT for zero-voltage switching applications such as induction cookers,” IET Trans. Circuits, Devices & Syst., Vol. 8, No. 3, pp. 176-181, May 2014.   DOI
14 J. Shen, H. Ma,W. Yan, J. Hui, and L. Wu, “PDM and PSM hybrid power control of a series-resonant inverter for induction heating applications,” IEEE Conference on Industrial Electronics and Applications (ICIEA), 2006.
15 H. Sarnago, O. Lucia, A. Mediano, and J. M. Burdio, “Direct AC–AC resonant boost converter for efficient domestic induction heating applications,” IEEE Trans. Power Electron., Vol. 29, No. 3, pp. 1128-1139, Mar. 2014.   DOI
16 I. Millan, J. M. Burdío, J. Acero, O. Lucía, and S. Llorente, “Series resonant inverter with selective harmonic operation applied to all-metal domestic induction heating,” IET Trans. Power Electron., Vol. 4, No. 5, pp. 587-592, May 2011.   DOI
17 L. Meng, K. W. E. Cheng, and K. W. Chan, “Systematic approach to high-power and energy-efficient industrial induction cooker system: circuit design, control strategy, and prototype evaluation,” IEEE Trans. Power Electron., Vol. 26, No. 12, pp. 3754-3765, Dec. 2011.   DOI
18 J. M. Burdio, L. A. Barragan, F. Monterde, D. Navarro, and J. Acero, “Asymmetrical voltage cancellation control for full-bridge series resonant inverters,” IEEE Trans. Power Electronics, Vol. 19, No. 2, pp. 461-469, Mar. 2004.   DOI
19 H. Sarnago, O. Lucia, A. Mediano, and J. M. Burdio, “Class D/DE dual-mode operation resonant converter for improved efficiency domestic induction heating system,” IEEE Trans. Power Electron., Vol. 28, No. 3, pp. 1274-1285, Mar. 2013.   DOI
20 F. Forest, E. Laboure, F. Costa, and J. Y. Gaspard, “Principle of a multi-load / single converter system for low power induction heating,” IEEE Trans. Power Electron., Vol. 15, No. 2, pp. 223-230, Mar. 2000.   DOI
21 N. A. Ahmed and M. Nakaoka, “Boost-half-bridge edge resonant soft switching PWM high-frequency inverter for consumer induction heating appliances,” IEE Electric Power Applications, Vol. 153, No. 6, pp. 932-938, Nov. 2006.   DOI
22 S. M. W. Ahmed, M. M. Eissa, M. Edress, and T. S. Abdel-Hameed, “Experimental investigation of full bridge series resonant inverters for induction-heating cooking appliances,” 4th IEEE Conference on Industrial Electronics and Applications, ICIEA 2009, pp.3327-3332, 2009.
23 M. Miyamae, T. Ito, K. Matsuse, and M. Tsukahara, “Performance of a high frequency quasi-resonant inverter with variable-frequency output for induction heating,” IEEE 7th International Power Electronics and Motion Control Conference, 2012.
24 A. Fujita, H. Sadakata, I. Hirota, H. Omori, and M. Nakaoka, “Latest developments of high-frequency series load resonant inverter type built-in cooktops for induction heated all metallic appliances,” IPEMC’ 2009, pp. 2537-2544, 2009.
25 O. Jimenez, O. Lucia, I. Urriza, L. A. Barragan, and D. Navarro, “Design and evaluation of a low-cost high-performance Σ –Δ ADC for embedded control systems in induction heating appliances,” IEEE Trans. Ind. Electron., Vol. 61, No. 5, pp. 2601-2611, May 2014.   DOI