• Title/Summary/Keyword: Electrical field

Search Result 8,632, Processing Time 0.03 seconds

Measurement of 2 Dimensional Magnetic Property of Grain-oriented Electrical Steel Sheet According to Exciting Field Direction using SST with 2 Axes Excitation (이방향 여자형 SST를 이용한 이방성 전기강판의 인가자계 방향에 따른 2차원 자계특성 측정)

  • Hwan, Eum-Young;Kim, Hong-Jung;Hong, Sun-Ki;Shin, Pan-Seok;Koh, Chang-Seop
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.5
    • /
    • pp.250-257
    • /
    • 2006
  • It is well known that Grain-oriented electrical steel sheets have two dimensional magnetic properties according to the direction of exciting field such as non-linear phase difference between magnetic flux density and magnetic field intensity vectors, different iron loss and permeability even when an alternating magnetic field is applied. The measurement and application of the two dimensional magnetic properties of the Grain-oriented electrical steel sheets, therefore, are very important for the design and precise performance analysis of electric machines made of them. As the direction of exciting field changes, in this paper, the two dimensional magnetic properties of a Grain-oriented electrical steel sheet, i.e., non-linear B-H curves, phase difference between B and H, and iron loss characteristics, are measured using SST(Single Sheet Tester) which has two axes excitation. The measured results are presented in two ways: using $(B,\theta_B)$ method and using hysteresis loops along rolling and transverse directions, respectively.

The Field Modulation Effect of a Fluoride Plasma Treatment on the Blocking Characteristics of AlGaN/GaN High Electron Mobility Transistors

  • Kim, Young-Shil;Seok, O-Gyun;Han, Min-Koo;Ha, Min-Woo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.4
    • /
    • pp.148-151
    • /
    • 2011
  • We designed and fabricated aluminium gallium nitride (AlGaN)/GaN high electron mobility transistors (HEMTs) with stable reverse blocking characteristics established by employing a selective fluoride plasma treatment on the drainside gate edge region where the electric field is concentrated. Implanted fluoride ions caused a depolarization in the AlGaN layer and introduced an extra depletion region. The overall contour of the depletion region was expanded along the drift region. The expanded depletion region distributed the field more uniformly and reduced the field intensity peak. Through this field modulation, the leakage current was reduced to 9.3 nA and the breakdown voltage ($V_{BR}$) improved from 900 V to 1,400 V.

Analysis of Cogging Torque in Interior Permanent Magnet Motor by Analytical Method

  • Kang, Gyu-Hong;Hong, Jung-Pyo;Kim, Gyu-Tak
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.11B no.2
    • /
    • pp.1-8
    • /
    • 2001
  • This paper deals with magnetic field analysis and computation of cogging torque using an analytical method in Interior Permanent Magnet Motor (IPMM). The magnetic field is analyzed by solving space harmonics field analysis due to magnetizing and the cogging torque is analyzed by combining field analysis with relative permeance. In reducing cogging torque, the inferences of various design variable and magnetizing distribution are investigated. It is shown that the slot and pole ratio (the pole-arc / pole-pitch ratio) combination has a significant effect on the cogging torque and presents a optimal flux barrier shape to reduce the cogging torque. The validity of the proposed technique is confirmed with 2-D Finite Element(FE) analysis.

A Study on Field Electron Emission Characteristics of Diamond-Like Carbon (다이아몬드성 탄소 박막의 전계 전자 방출 특성에 관한 연구)

  • Yeo, Seon-Young;Pyo, Jae-Hwack;Kim, Joong-Kyun;Whang, Ki-Woong
    • Proceedings of the KIEE Conference
    • /
    • 1996.11a
    • /
    • pp.203-205
    • /
    • 1996
  • DLC(Diamond-Like Carbon) films were prepared by Inductively Coupled Plasma(ICP) CVD system. It was confirmed that the field emission characteristics are closely related to the richness of C-H bonding incorporated in the DLC. According to Fowler-Nordheim equation, it is thought that the ability of DLC to emit electron at relatively low voltage is due to the field enhancement caused by the nodules of ${\sim}100nm$ size on the surface of DLC. The electric field to start field emission was about $1.4{\times}10^9V/m$ in case of DLC film deposited at input power of 400W and substrate bias of -100V.

  • PDF

The Research on Trench Etched Field Ring with Dual Ion-Implantation for Power Devices (이중 이온주입 공정을 이용한 트렌치 필드링 설계 최적화 및 전기적 특성에 관한 연구)

  • Yang, Sung-Min;Oh, Ju-Hyun;Bae, Young-Seok;Sung, Man-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.5
    • /
    • pp.364-367
    • /
    • 2010
  • The dual ion-implantation trench edge termination techniques were investigated and optimized using a two-dimensional device simulator. By trenching the field ring site which would be dual implanted, a better blocking capability can be obtained. The results show that the p-n junction with dual implanted junction field-ring can accomplish nearly 20% increase of breakdown voltage in comparison with the conventional trench field-rings. The fabrication is relatively difficult. But the trench etched field ring with dual ion-implantation is surpassed for breakdown voltage and consume same area and extensive device simulations as well as qualitative analysis confirm these conclusions.

Improved Method for Calculating Magnetic Field of Surface-Mounted Permanent Magnet Machines Accounting for Slots and Eccentric Magnet Pole

  • Zhou, Yu;Li, Huaishu;Wang, Wei;Cao, Qing;Zhou, Shi
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.1025-1034
    • /
    • 2015
  • This paper presented an improved analytical method for calculating the open-circuit magnetic field in the surface-mounted permanent magnet machines accounting for slots and eccentric magnet pole. Magnetic field produced by radial and parallel permanent magnet is equivalent to that produced by surface current according to equivalent surface-current method of permanent magnet. The model is divided into two types of subdomains. The field solution of each subdomain is obtained by applying the interface and boundary conditions. The magnet field produced by equivalent surface current is superposed according to superposition principle of vector potential. The investigation shows harmonic contents of radial flux density can be reduced a lot by changing eccentric distance of eccentric magnet poles compared with conventional surface-mounted permanent-magnet machines with concentric magnet poles. The FE(finite element) results confirm the validity of the analytical results with the proposed model.

Calculation of Iron Loss under Rotational Magnetic Field Using Finite Element Method (회전 자계에 의한 철손의 유한요소 해석)

  • Lee, H.Y.;Park, G.S.;Hahn, S.Y.
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.147-149
    • /
    • 1994
  • In designing high efficiency electrical machines, calculation of iron loss is very important. And it is reported that in the induction motor and in the T-joint of 3 phase transformer, there occurred rotational magnetic field and much iron loss is generated owing to this field. In this paper, rotational power loss in the electrical machine under rotational magnetic field is discussed. Until now, loss analysis is based on the magnetic properties under alternating field. And with this one dimensional magnetic propertis, it is difficult to express iron loss under rotational field. In this paper, we used two dimensional magnetic property data for the numerical calculation of rotational power loss. We used finite element method for calculation and the analysis model is two dimensional magnetic property measurement system. We used permeability tensor instead of scalar permeability to present two dimensional magnetic properties. And in this case, we cannot uniquely define energy functional because of the asymmetry of the permeability tensor, so Galerkin method is used for finite element analysis.

  • PDF

Field Optimization Using NURB Surface in 3-Dimensional Space (NURB 곡면을 이용한 일반 3차원 전계최적화)

  • Lee, Byeong-Yoon;Kim, Eung-Sik;Park, Jong-Keun
    • Proceedings of the KIEE Conference
    • /
    • 1991.11a
    • /
    • pp.67-70
    • /
    • 1991
  • When analyzing field or optimizing the shape of electrode in three dimensional space by using the surface charge method, we need to divide finely the surface of electrode into surface element like triangle or rectangle. In this case, there exist any variables in field analysis or field optimization. In particular, smoothness on the surface of optimized shape is not good. Recently, A paper is published where introducing NURB curve to field analysis and field optimization about two dimensional space model and axial symmetric three dimensional space model results in reduced variables, enhenced accuracy and improved smoothness. NURB curve has some useful properties like continuity, controllability and locality. Therefore in this paper, in order to improve the demerits of the established optimization method for three dimensional space models, the NURB surface that has same properties in common with NURB curve is used to analyze and optimize simple model.

  • PDF

Effects of Applied Magnetic Field on the Electrical Properties of High Tc Superconductor (외부자장에 의한 초전도체의 전기적 특성 변화 기구)

  • Lee Sang-Heon
    • Journal of Powder Materials
    • /
    • v.13 no.3 s.56
    • /
    • pp.217-222
    • /
    • 2006
  • The relationship between electrical properties of superconductor and externally applied magnetic field was studied to develop a magnetic field sensor. The electrical resistance of the superconductor was increased by applying external magnetic field and even after removal of the magnetic field. This behavior was related to the magnetic flux trapped in the superconductor, which penetrated through the material by the external magnetic field. Some portion of the superconductor was changed to a normal state by the trapped magnetic flux. The appearance of the normal state yielded to enhance the electrical resistance.

Performance of Non Punch-Through Trench Gate Field-Stop IGBT for Power Control System and Automotive Application

  • Kang, Ey Goo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.1
    • /
    • pp.50-55
    • /
    • 2016
  • In this paper, we have analyzed the electrical characteristics of 1200V trench gate field stop IGBT and have compared to NPT planar type IGBT and NPT planar field stop IGBT. As a result of analyzing, we obtained superior electrical characteristics of trench gate field stop IGBT than conventional IGBT. To begin with, the breakdown voltage characteristic was showed 1,460 V and on state voltage drop was showed 0.7 V. We obtained 3.5 V threshold voltage, too. To use these results, we have extracted optimal design and process parameter and designed trench gate field stop IGBT. The designed trench gate IGBT will use to inverter of renewable energy and automotive industry.