Browse > Article
http://dx.doi.org/10.4313/TEEM.2011.12.4.148

The Field Modulation Effect of a Fluoride Plasma Treatment on the Blocking Characteristics of AlGaN/GaN High Electron Mobility Transistors  

Kim, Young-Shil (School of Electrical Engineering, Seoul National University)
Seok, O-Gyun (School of Electrical Engineering, Seoul National University)
Han, Min-Koo (School of Electrical Engineering, Seoul National University)
Ha, Min-Woo (Korea Electronics Technology Institute)
Publication Information
Transactions on Electrical and Electronic Materials / v.12, no.4, 2011 , pp. 148-151 More about this Journal
Abstract
We designed and fabricated aluminium gallium nitride (AlGaN)/GaN high electron mobility transistors (HEMTs) with stable reverse blocking characteristics established by employing a selective fluoride plasma treatment on the drainside gate edge region where the electric field is concentrated. Implanted fluoride ions caused a depolarization in the AlGaN layer and introduced an extra depletion region. The overall contour of the depletion region was expanded along the drift region. The expanded depletion region distributed the field more uniformly and reduced the field intensity peak. Through this field modulation, the leakage current was reduced to 9.3 nA and the breakdown voltage ($V_{BR}$) improved from 900 V to 1,400 V.
Keywords
Gallium nitride; Aluminium gallium nitride; High electron mobility transistor; Breakdown; Fluoride;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 Yong Cai, Yugang Zhou, Lau, K.M. and Chen, K.J, IEEE Trans. Electron Dev. 53, 2207 (2006) [DOI: 10.1109/TED.2006.881054].   DOI   ScienceOn
2 X. Huili, Y. Dora, A. Chini, S. Heikman, S. Keller, and U. K. Mishra, IEEE Electron Device Lett. 25, 161 (2004) [DOI: 10.1109/LED.2004.824845].   DOI   ScienceOn
3 A. Chini, D. Buttari, R. Coffie, S. Heikman, S. Keller, and U. K. Mishra, Electron. Lett 40, 73 (2004) [DOI: 10.1049/el:20040017].   DOI   ScienceOn
4 Y. F. Wu, A. Saxler, M. Moore, R. P. Smith, S. Sheppard, P. M. Chavarkar, T. Wisleder, U. K. Mishra, and P. Parikh, IEEE Electron Device Lett. 25, 117 (2004) [DOI: 10.1109/LED.2003.822667].   DOI   ScienceOn
5 A. Khaligh and A. Emadi, J. Electr. Eng. Technol. 1, 63 (2006).   DOI   ScienceOn
6 O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff, L. F. Eastman, R. Dimitrov, L. Wittmer, M. Stutzmann, W. Rieger, and J. Hilsenbeck, J. Appl. Phys. 85, 3222 (1999) [DOI: 10.1063/1.369664].   DOI   ScienceOn
7 C. Yong, Z. Yugang, K. J. Chen, and K. M. Lau, IEEE Electron Device Lett. 26, 435 (2005) [DOI: 10.1109/LED.2005.851122].   DOI   ScienceOn
8 L. Yuan, M. Wang, and K. J. Chen, Physica Status Solidi (c) 6, S944 (2009) [DOI: 10.1002/pssc.200880776]   DOI   ScienceOn
9 F. Medjdoub, M. Alomari, J. F. Carlin, M. Gonschorek, E. Feltin, M. A. Py, C. Gaquiere, N. Grandjean, and E. Kohn, Electron. Lett 44, 696 (2008) [DOI: 10.1049/el:20080864].   DOI   ScienceOn
10 F. Sacconi, A. Di Carlo, P. Lugli, and H. Morkoc, IEEE Trans. Electron Dev. 48, 450 (2001) [DOI: 10.1109/16.906435].   DOI   ScienceOn