• 제목/요약/키워드: Electrical breakdown voltage

검색결과 1,206건 처리시간 0.041초

Protection Circuit Module에 최적화된 60 V급 TDMOSFET 최적화 설계에 관한 연구 (Study on Design of 60 V TDMOSFET for Protection Circuit Module)

  • 이현웅;정은식;오름;성만영
    • 한국전기전자재료학회논문지
    • /
    • 제25권5호
    • /
    • pp.340-344
    • /
    • 2012
  • Protected Circuit Module protects battery from over-charge and over-discharge, also prevents accidental explosion. Therefore, power MOSFET is essential to operate as a switch within the module. To reduce power loss of MOSFET, the on state voltage drop should be lowered and the switching time should be shorted. However there is trade-off between the breakdown voltage and the on state voltage drop. The TDMOS can reduce the on state voltage drop. In this paper, effect of design parameter variation on electrical properties of TDMOS, were analyzed by computer simulation. According to the analyzed results, the optimization was performed to get 65% higher breakdown voltage and 17.4% on resistance enhancement.

Study on Electrical Characteristics According Process Parameters of Field Plate for Optimizing SiC Shottky Barrier Diode

  • Hong, Young Sung;Kang, Ey Goo
    • Transactions on Electrical and Electronic Materials
    • /
    • 제18권4호
    • /
    • pp.199-202
    • /
    • 2017
  • Silicon carbide (SiC) is being spotlighted as a next-generation power semiconductor material owing to the characteristic limitations of the existing silicon materials. SiC has a wider band gap, higher breakdown voltage, higher thermal conductivity, and higher saturation electron mobility than those of Si. When using this material to implement Schottky barrier diode (SBD) devices, SBD-state operation loss and switching loss can be greatly reduced as compared to that of traditional Si. However, actual SiC SBDs exhibit a lower dielectric breakdown voltage than the theoretical breakdown voltage that causes the electric field concentration, a phenomenon that occurs on the edge of the contact surface as in conventional power semiconductor devices. Therefore in order to obtain a high breakdown voltage, it is necessary to distribute the electric field concentration using the edge termination structure. In this paper, we designed an edge termination structure using a field plate structure through oxide etch angle control, and optimized the structure to obtain a high breakdown voltage. We designed the edge termination structure for a 650 V breakdown voltage using Sentaurus Workbench provided by IDEC. We conducted field plate experiments. under the following conditions: $15^{\circ}$, $30^{\circ}$, $45^{\circ}$, $60^{\circ}$, and $75^{\circ}$. The experimental results indicated that the oxide etch angle was $45^{\circ}$ when the breakdown voltage characteristics of the SiC SBD were optimized and a breakdown voltage of 681 V was obtained.

Effect of Conductor Radius of Polyesterimide- Polyamideimide Enameled Round Wire on Insulation Breakdown Voltage and Insulation Lifetime

  • Park, Jae-Jun;Shin, Seong-Sik;Lee, Jae-Young;Han, Se-Won;Kang, Dong-Pil
    • Transactions on Electrical and Electronic Materials
    • /
    • 제16권3호
    • /
    • pp.146-150
    • /
    • 2015
  • Insulation breakdown voltage and insulation lifetime were investigated in straight lines or twisted pairs with polyesterimide-polyamideimide enameled round wires (EI/AIW ). The enamel thickness was 50 μm and the conducting copper radius was 0.50, 0.75, 1.09, and 1.50 mm, respectively. There were many air gaps in a twisted pair therefore, when voltage was applied to the twisted pair, enamel erosion took place in the air gap area because of partial discharge according to Paschen's law. Insulation breakdown voltage and insulation lifetime were highest in the sample of 0.75 mm conductor radius, which was higher than those values for 0.50 mm or 1.09 and 1.55 mm.

4H-SiC RESURF LDMOSFET 소자의 전기적 특성분석 (Analysis of the Electrical Characteristics of 4H-SiC LDMOSFET)

  • 김형우;김상철;방욱;김남균;서길수;김은동
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 하계학술대회 논문집 Vol.6
    • /
    • pp.101-102
    • /
    • 2005
  • SiC lateral power semiconductor device has high breakdown voltage and low on-state voltage drop due to the material characteristics. And, because the high breakdown voltage can be obtained, RESURF technique is mostly used in silicon power semiconductor devices. In this paper, we presents the electrical characteristics of the 4H-SiC RESURF LDMOSFET as a function of the epi-layer length, concentration and thickness. 240~780V of breakdown voltage can be obtained as a function of epi-layer length and thickness with same epi-layer concentration.

  • PDF

직접회로용 NPN BJT의 베이스-컬렉터간 역방향 항복전압 추출 알고리즘 (The Algorithm for Calculating the Base-Collector Breakdown Voltage of NPN BJT for Integrated Circuits)

  • 이은구;김철성
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제52권2호
    • /
    • pp.67-73
    • /
    • 2003
  • The algorithm (or calculating the base-collector breakdown voltage of NPN BJT(Bipolar Junction Transistor) for integrated circuits is Proposed. The method for calculating the electric field using the solution of Poisson's equation is presented and the method for calculating the breakdown voltage using the integration of ionization coefficients is presented. The base-collector breakdown voltage of NPN BJT using 20V process obtained from the proposed method shows an averaged relative error of 8.0% compared with the measured data and the base-collector breakdown voltage of NPN BJT using 30V process shows an averaged relative error of 4.3% compared with the measured data

1000V 급 바이폴라 접합 트랜지스터에 대한 고내압화의 설계 및 제작 (Design and fabrication for high breakdown voltage on 1000V bipolar junction transistor)

  • 허창수;추은상;박종문;김상철
    • 대한전기학회논문지
    • /
    • 제44권4호
    • /
    • pp.490-495
    • /
    • 1995
  • A bipolar junction transistor which exihibits 1000V breakdown voltage is designed and fabricated using FLR (Field Limiting Rings). Three dimensional effects on the breakdown voltage is investigated in the cylindrical coordinate and the simulation results are compared with the results in the rectangular coordinate. Breakdown voltage of the device with 3 FLR is simulated to be 1420V in the cylindrical coordinate while it is 1580V in rectangular coordinate. Bipolar junction transistor has been fabricated using the epitaxial wafer of which resistivity is 86 .OMEGA.cm and thickness is 105 .mu.m. Si$_{3}$N$_{4}$ and glass are employed for the passivation. Breakdown of the fabricated device is measured to be 1442V which shows better greement with the simulation results in cylindrical coordination.

  • PDF

얕은 트렌치와 전계 제한 확산 링을 이용한 접합 마감 설계의 1200 V급 소자에 적용 (The Junction Termination Design Employing Shallow Trench and Field Limiting Ring for 1200 V-Class Devices)

  • 하민우;오재근;최연익;한민구
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제53권6호
    • /
    • pp.300-304
    • /
    • 2004
  • We have proposed the junction termination design employing shallow trench filled with silicon dioxide and field limiting ring (FLR). We have designed trenches between P+ FLRs to decrease the junction termination radius without sacrificing the breakdown voltage characteristics. We have successfully fabricated and measured improved breakdown voltage characteristics of the Proposed device for 1200 V-class applications. The junction termination radius of the proposed device has decreased by 15%-21% compared with that of the conventional FLR at the identical breakdown voltage. The junction termination area of the proposed device has decreased by 37.5% compared with that of the conventional FLR. The breakdown voltage of the proposed device employing 7 trenches was 1156 V, which was 80% of the ideal parallel-plane .junction breakdown voltage.

전극 간격에 따른 공기의 절연파괴 특성에 관한 연구 (A Study on the Electrical Breakdown Characteristics of Air according to Electrode Gap)

  • 강종오;이온유;김준일;방승민;이홍석;이종득;강형구
    • 전기학회논문지P
    • /
    • 제63권4호
    • /
    • pp.301-306
    • /
    • 2014
  • Recently in accordance with the rapid development of the industrial society, the accidents caused by dielectric breakdown have been increasing in power grid. It is important to prevent the dielectric breakdown of a high voltage apparatus to reduce the damage from electrical hazards. To establish an electrically reliable database of insulation design criteria for high voltage apparatus, a study on dielectric characteristics test is indispensable. In this study, dielectric characteristics according to field utilization factors (${\xi}$) which are represented as the ratio of mean electric field to maximum electric field are investigated. the dielectric breakdown experiments by using several kinds of electrode systems made with stainless steel are performed by AC breakdown voltage under air-insulation. Also, the experimental results are analyzed by the Weibull distribution. As a result, it is found that the dielectric characteristics of air-insulation are determined by ${\xi}$ as well as arrangement of electrode systems. It is considered that the results of this study would be applicable to designing the air-insulated high voltage apparatuses.

초미소간격(超微小間隔)과 극단(極端)펄스방전(放電)을 이용(利用)한 미연소탄소립자(未燃燒炭素粒子) 소각제거기술(燒却除去技術) 개발기초연구(開發基礎硏究)(I) (초미소간격(超微小間隔)의 방전현상(放電現象)) (A Basic Study on a New Type Particulate Emission Control Means of a Power Station Using a Micro-Gap and a Pulse Discharge (Micro-Airgap Discharge Phenomena))

  • 문재덕;신수연
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1993년도 하계학술대회 논문집 B
    • /
    • pp.605-608
    • /
    • 1993
  • Breakdown characteristics of a small rod-to-rod microairgap has been studied for obtain an optimum breakdown voltage and an airgap spacing to be used as an emission control means by the electrical arc-burning unburnt carbon particulates exhausted from a power station burner. It is found that the breakdown voltage at the rod-to-rod airgap spacing in the rang of $1{\sim}100{\mu}m$ decreased with decrease in the rod-to-rod airgap spacing. And there were no minimum breakdown voltage on a $V_b$-Pd characteristics which is known as the minimum voltage in Paschen's law in air atmosphere. Breakdown voltages of the airgap at the constant airgap spacing were $V_{b-dc}>V_{b-ac}>V_{b-pulse}$, and it was lowest for the pulse voltage applied. As a result, it is found that a pulse power was one of effective power compared with dc or ac to be used as such an unburnt carbon particulate emission control means and the airgap spacing became to several tens ${\mu}m$, then the breakdown voltages were down to several handreds voltages.

  • PDF

The Estimation of the Dielectric Strength Decrease of the Solid-solid Interfaces by using the Applied Voltage to Breakdown Time Characteristics

  • Shin, Cheol-Gi;Bae, Duck-Kweon
    • Transactions on Electrical and Electronic Materials
    • /
    • 제8권6호
    • /
    • pp.278-282
    • /
    • 2007
  • In the complex insulation system that is used in extra high voltage(EHV) devices, according to the trend for electric power equipment of high capacity and reduction of its size, macro interfaces between two different bulk materials which affect the stability of insulation system exist inevitably. In this paper, the dielectric strength decrease of the macro interfaces between epoxy and ethylene propylene diene terpolymer(EPDM) was estimated by using the applied voltage to breakdown time characteristics. Firstly, the AC short time dielectric strength of specimens was measured at room temperature. Then, the breakdown time was measured under the applied constant voltage which is 70% of short time breakdown voltage. With these processes, the life exponent n was determined by inverse power law, and the long time breakdown voltage can be evaluated. The best condition of the interface was LOS(low viscosity(350 cSt) silicone oil spread specimen). When 30 years last on the specimens, the breakdown voltage was estimated 44% of the short time breakdown voltage.