• Title/Summary/Keyword: Electrical breakdown strength

Search Result 405, Processing Time 0.041 seconds

Life Evaluation of Nano-Composites According to the Addition of MgO (산화마그네슘 첨가에 따른 나노컴퍼지트의 수명평가)

  • Shin, Jong-Yeol;Jeong, In-Bum;Hong, Jin-Woong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.6
    • /
    • pp.390-395
    • /
    • 2015
  • Molded insulation materials are widely used from large electric power transformer apparatus to small electrical machinery and apparatus. In this study, by adding MgO with the average particle of several tens nm and the excellent thermal conductivity into molding material, we improved the problem of insulation breakdown strength decrease according to rising temperature in overload or in bad environmental condition. We confirmed the life evaluation by using the insulation breakdown and inverse involution to investigate the electrical characteristics of nano-composites materials. By using a scanning electron microscope, it is confirmed that MgO power with the average particle size of several tens nm is distributed and the filler particles is uniformly distributed in the cross section of specimens. And it is confirmed that the insulation breakdown strength of Virgin specimens is rapidly decreased at the high temperature area. But it is confirmed that the insulation breakdown strength of specimens added MgO slow decreased by thermal properties in the high temperature area improved by the contribution of the heat radiation of MgO and the suppression of tree. The results of life prediction using inverse involution, it is confirmed that the life of nano-composites is improved by contribution of MgO according to the predicted insulation breakdown strength after 10 years of specimens added 5.0 wt% of MgO is increased about 2.9 times at RT, and 4.9 times at $100^{\circ}C$ than Virgin specimen, respectively.

Interfacial Breakdown characteristics in XLPE/EPDM Laminate (XLPE/EPDM laminate의 절연파괴특성)

  • 남진호;서광석
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.495-497
    • /
    • 1999
  • In order to determine what influences the interfacial breakdown in EPDM/XLPE laminates, We made the breakdown test ceil and this was pressure controllable breakdown test cell. We make the needle electrode (tip radius: about 10 micrometer) using electrochemical method. We studied the interfacial silicone oil was higher than that with silicone grease. As a function of heat treatment time in a vacuum, interfacial breakdown strength increased much in XLPE/EPDM laminates pasted with silicone grease but increased a little in that with silicone oil.

  • PDF

Breakdown Strength Estimation of Non-Cellulosic Insulating Materials Used in Electrical Power Equipment

  • Singh, Sakshi;Mohsin, Mirza Mohd.;Masood, Aejaz
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.6
    • /
    • pp.338-340
    • /
    • 2017
  • Breakdown of solid insulating materials in power equipment could result in undesired outages and replacements, and may be due to an increase in electric stress on the material. Therefore, it is necessary to conduct a proper diagnosis of materials before their practical use. In this work, a few inherent properties of different non-cellulosic insulating materials, such as Nomex, Teflon, laminated Nomex, glass bonded mica, epoxy resin bonded mica paper, and epoxy resin bonded fiberglass, have been evaluated by performing non-destructive dielectric diagnostic measurements, and an attempt has been made to correlate these basic parameters to evaluate the breakdown strength (BDS). An equation has been proposed using a basic theory which defines the correlation between the BDS, dielectric constant, dissipation factor, sample thickness, and volume resistivity. The results obtained from the equation are also compared with the experimental values. The suggested equation will be helpful to predict the BDS of any non-cellulosic material without experimentation in the laboratory.

Long-term and Short-term AC Treeing Breakdown of Epoxy/Micro-Silica/Nano-Silicate Composite in Needle-Plate Electrodes

  • Park, Jae-Jun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.5
    • /
    • pp.252-255
    • /
    • 2012
  • In order to characterize insulation properties of epoxy/micro-silica/nano-silicate composite (EMNC), long-term and short-term AC treeing tests were carried out undr non-uniform electric field generated between needle-plate electrodes. In a long-term test, a 10 kV (60 Hz) electrical field was applied to the specimen positioned between the electrodes with a distance of 2.7 mm in an insulating oil bath at $30^{\circ}C$, and a typical branch type electrical tree was observed in the neat epoxy resin and breakdown took place at 1,042 min after applying the 10 kVelectrical field. Meanwhile, the spherical tree with the tree length of $237{\mu}m$ was seen in EMNC-65-0.3 at 52,380 min (36.4 day) and then the test was stopped because the tree propagation rate was too low. In the short-term test, an electrial field was applied to a 3.5 mm-thick specimen at an increasing voltage rate of 0.5 kV/s until breakdown in insulating oil bath at $30^{\circ}C$ and $130^{\circ}C$, and the data was estimated by Weibull statistical analysis. The electrical insulation breakdown strength for neat epoxy resin was 1,763 kV/mm at $30^{\circ}C$, while that for EMNC-65-0.3 was 2,604 kV/mm, which was a modified value of 47%. As was expected, the breakdown strength decreased at higher test temperatures.

A Study on Estimation of Life-time under Semiconducting Layer/Needle Electrode in XLPE (반도전층/침전극하에서 XLPE의 수명시간예측)

  • Oh, Ja-Hyung;Kim, Sung-Tak;Park, Dae-Hee
    • Proceedings of the KIEE Conference
    • /
    • 1998.07d
    • /
    • pp.1475-1477
    • /
    • 1998
  • In this paper, breakdown strength and time to breakdown are experimented under semiconducting layer/needle electrode in XLPE which is used for power cable insulator. Shape and scale parameters of obtained data are estimated using 2-parameters Weibull distribution. Life-time coefficient(n-value) using shape parameters for breakdown strength and time to breakdown tests is estimated. n-value of 1000 hour aged XLPE showed higher value than that of virgin XLPE. Increase of n-value is estimated by the stability due to removal of by-product and residue gas in XLPE by heating.

  • PDF

Effects of Temperature on Dielectric Breakdown Strength of Epoxy Compounds Filled with Natural Zecolite

  • Kim, You-Jeong;Park, Hyeong-Ki;Kim, Sang-Wook
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.544-547
    • /
    • 1999
  • To develop the better insulants. the zeolite particle, which is aluminosilicate mineral, was filled In the DGEBA/MDA/SN epoxy resin system. Dynamic DSC curves of cured specimens with various contents of zeolite were observed and the glass transition temperature(T$_{g}$) was obtained. According to this result, we could carry out the experiment concerned with the dielectric breakdown strength around T$_{g}$ and find the limit temperature for the application of the DDEBA/MDA/SN system filled with natural zeolite. T$_{g}$ increased with the content of zeolite. As the temperature increased, the dielectric breakdown strength decreased rapidly, in the region of T$_{g}$. At the high temperature, the deterioration by electrical stress was activated. The diameter of puncture at the high temperature was larger 7han that at the room temperature.erature.

  • PDF

Effect oh Heat Treatment on Breakdown Properties in the Joint Interface of Power Cables (전력케이블 절연접속계면의 절연파괴 특성에 미치는 열처리 효과)

  • 이창종;김진수;박강식;한상옥
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.7
    • /
    • pp.502-507
    • /
    • 1998
  • The purpose of this study is to investigate the breakdown properties in joint interface of power cables with heat treatment. The specimens have the structure of XLPE/EPDM interface like the joint of distribution power cable. The breakdown characteristics of the SLPE/EPDM joint were studied with crosslinking by=products. AC breakdown voltages were measured with heat treatment time and interfacial materials and crosslinking by-products as testing factors. This study has shown that crosslinking by-product gases play an important role at the insulation properties of cable joints by heating. The dielectric strength shows the lowest values at 4 hours heat treatment. The AC breakdown strength in the untreated sample was increased with heat treatment time.

  • PDF

Interfacial Breakdown Phenomena in XLPE/EPDM Laminates (XLPE/EPDM laminate의 계면절연파괴괴현상)

  • 남진호;서광석
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.540-543
    • /
    • 1999
  • In order to determine what indluences the interfacial breakdown in EPDM/XLPE laminates. We studied the interfacial breakdown phenomena at several interfacial conditions. Breakdown strength in laminates pasted with silicone oil was higher than that with silicone grease. As a function of heat treatment time in a vacuum, interfacial breakdown strength increased much in XLPE/EPDM laminates pasted with silicone grease but increased a little in that with silcone oil. FT-IR spectrum of silicone oil was similar to that is silicone grease. FT-lR spectrum of silicone oil was not changed by the heat treatment in a vacuum, but in silicone grease another peak appeared.

  • PDF

A Study on the Dielectric Strength in Section of Winding in SF6 Gas Transformer ($SF_6$ 가스절연변압기에서 권선의 섹션에 대한 절연내력 연구)

  • Heo, U-Haeng;Ha, Yeong-Sik;Hong, Jeong-Pyo;Kim, Gyu-Tak
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.3
    • /
    • pp.152-158
    • /
    • 2000
  • This paper deal with the experimental discussion about the impulse and AC dielectric strength of SF6 gas insulated transformer. Test sample is measured the dielectric breakdown voltage about modeling of the first and second section which is the weakest for surge voltage. The AC breakdown voltage is appeared 1.4 times than impulse breakdown voltage, so we can estimate that the impulse breakdown voltage is severe to AC breakdown voltage, and when the impulse is applied, in case of lmm tapping with Nomex paper, the characteristics of dielectric breakdown voltage is same to that in oil immersed transformer when SF6 gas pressure is 2.2kg/$cm^2$G.

  • PDF

Study on the Prediction of the Life-time in the Macroscopic Solid-Solid Interfaces (고체-고체 거시계면의 수명예측에 관한 연구)

  • 박정규;배덕권;정동회;오재한;김충혁;이준웅
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.775-778
    • /
    • 2000
  • In this paper, the life-time of macro interface between Epoxy/EPDM which consists in underground power cable joints is predicted. The electrode system of specimen is designed by FEM(finite elements method). The breakdown strength of specimens are observed by applying high AC voltage at the room temperature. The breakdown times under the constant voltage below the breakdown voltage were gained. As constant voltage is applied, the breakdown time is proportion to the breakdown strength. The life exponent n is gained by inverse power law, and the long breakdown life time can be evaluated.

  • PDF