• Title/Summary/Keyword: Electric vehicle

Search Result 2,199, Processing Time 0.032 seconds

Battery Sensitivity Analysis on Initial Sizing of eVTOL Aircraft (전기 추진 수직이착륙기의 초기 사이징에 대한 배터리 민감도 분석)

  • Park, Minjun;Choi, Jou-Young Jason;Park, Se Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.12
    • /
    • pp.819-828
    • /
    • 2022
  • Sensitivity of aircraft sizing depending on battery performance was studied for a generic quad tilt rotor type electric vertical takeoff and landing vehicle. The mission requirements proposed by Uber Elevate and NASA were used for initial sizing, and the calculated gross weight is ranged between 5,000lb and 11,000lb for battery specific energy range of 200-400Wh/kg in pack level and continuous discharge rate range of 4-5C. For the assumed gross weight of 7,000lb, the required battery performance was calculated with two different criteria: available power and energy, and the effects of battery specific energy and discharge rate are analyzed. The maximum discharge rate is also recommended considering failure cases such as one battery pack inoperative and one prop rotor inoperative.

Surface Modification Technology and Research Trends of Separators for Lithium-Ion Batteries (리튬이온 전지용 분리막의 표면 개질 기술 및 연구 동향)

  • Ha, Seongmin;Kim, Daesup;Kwak, Cheol Hwan;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.33 no.4
    • /
    • pp.343-351
    • /
    • 2022
  • Lithium-ion batteries (LIBs) are considered promising energy storage devices with good performance such as high energy density, slow self-discharge rate, high rate charge capacity, and long battery life. However, the application of these LIBs in the high-energy density electric vehicle and large device industries poses a major safety problem. In order to solve this problem, developing a material having high thermal stability and intrinsic safety is the ultimate solution for improving the stability and electrochemical performance of LIBs. This review introduced a surface modification technology of a separator to overcome the stability problem of a commercial separator, and summarized and summarized the research trends using the modified separator for a lithium-ion battery. Based on this, the future prospects for the separator development by surface modification were discussed.

A Study on Thermal Flow Analysis in Grinding Disc Assembly for Disintegration of Secondary Battery Materials (이차전지 원료 해쇄용 그라인딩 디스크 어셈블리 내 열 유동 해석에 관한 연구)

  • Dong-Min Yun;Yong-Han Jeon
    • Design & Manufacturing
    • /
    • v.16 no.4
    • /
    • pp.34-39
    • /
    • 2022
  • Sustained economic development around the world is accelerating resource depletion. Research and development of secondary batteries that can replace them is also being actively conducted. Secondary batteries are emerging as a key technology for carbon neutrality. The core of an electric vehicle is the battery (secondary battery). Therefore, in this study, the temperature change by the heat source of the hammer and the rotational speed (rpm) of the abrasive disc of the Classifier Separator Mill (CSM) was repeatedly calculated and analyzed using the heat flow simulation STAR-CCM+. As the rotational speed (rpm) of the abrasive disk increases, the convergence condition of the iteration increases. Under the condition that the inlet speed of the Classifier Separator Mill (CSM) and the heat source value of the disc hammer are the same, the disc rotation speed (rpm) and the hammer temperature are inversely proportional. As the rotational speed (rpm) of the disc increases, the hammer temperature decreases. However, since the wear rate of the secondary battery material increases due to the strong impact of the crushing rotational force, it is determined that an appropriate rpm setting is necessary. In CSM (Classifier Separator Mill), it is judged that the flow rate difference is not significantly different in the direction of the pressure outlet (Outlet 1) right above the classifier wheel with the fastest flow rate. Because the disc and hammer attachment technology is adhesive, the attachment point may deform when the temperature of the hammer rises. Therefore, it is considered necessary to develop high-performance adhesives and other adhesive technologies.

A Study on Damage Assessment for Fuel Cell Facilities in Gas Stations (주유소 내 연료전지설비에 대한 사고피해예측 연구)

  • Sung Yoon Lim;Jang Choon Lee;Jae Hoon Lee;Seung Ho Choi
    • Journal of Korean Society of Disaster and Security
    • /
    • v.16 no.1
    • /
    • pp.71-80
    • /
    • 2023
  • Fuel cells are low-carbon power sources that can expand distributed energy system and electric vehicle charging infrastructure when installing fuel cells in gas stations. In order to ensure safety for fuel cells in gas stations, quantitative risk assessments were conducted after deriving accident scenarios based on accident data of domestic and foreign gas stations and fuel cells. It calculates the expected extent of damage from fire and explosion that can occur in reality, not the worst accident scenario, and analyzes the damage impact. The separation distance of more than 9.0 m from a dispenser, 15.5 m from a car under refueling, 4.1 m from the ventilation pipe, 1.1 m from the gas adjustment device prevent the severe damage caused by the expected accident. This study result can be used to deploy fuel cells in gas stations and establish safety measures.

Corrosion Resistance of Al6061-T6 by Organic/Inorganic Hybrid Coating Solution (유/무기하이브리드 코팅액에 의한 Al6061-T6의 내식 특성)

  • Mi-Hyang Park;Ki-Hang Shin;Byoung-Chul Choi;Byung-Hyun Ahn;Gum-Hwa Lee;Ki-Woo Nam
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.4_2
    • /
    • pp.591-598
    • /
    • 2023
  • In this study, the corrosion resistance by salt spray was evaluated using A6061-T6 for an electric vehicle battery pack case coated with an organic/inorganic hybrid solution. The lowest curing temperature of 190 ℃ resulted in significant corrosion and pitting. Meanwhile, no corrosion was observed in the coated specimens at 210 ℃ and 230 ℃ except at 210 ℃ - 6 min and 8 min. The surface of the as-received coating specimen observed by FE-SEM exhibited streaks and dents in the rolling direction, but the coating surface was clean. On the 190 ℃ - 6 min coating specimen, which had a lot of corrosion, rolling streaks spread, and dents were caused by corrosion. The 200 ℃ - 12 min coating specimen did not show corrosion, but it showed an etched surface. In the line profile, Si, the main component of the coating solution, was detected the most, and Ti was also detected. In the coating specimens with salt spray, O increased and Si decreased, regardless of corrosion. The peeling rate by adhesion evaluation was 26 - 87% for the 190 ℃ coating specimen, 4 - 83% for the 210 ℃ coating specimen, and 94 - 100% for the 230 ℃ coating specimen. The optimal curing conditions for the coating solution used in this study were 210 ℃ for 10 min.

Ag Sintering Die Attach Technology for Wide-bandgap Power Semiconductor Packaging (Wide-bandgap 전력반도체 패키징을 위한 Ag 소결 다이접합 기술)

  • Min-Su Kim;Dongjin Kim
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.1
    • /
    • pp.1-16
    • /
    • 2023
  • Recently, the shift to next-generation wide-bandgap (WBG) power semiconductor for electric vehicle is accelerated due to the need to improve power conversion efficiency and to overcome the limitation of conventional Si power semiconductor. With the adoption of WBG semiconductor, it is also required that the packaging materials for power modules have high temperature durability. As an alternative to conventional high-temperature Pb-based solder, Ag sintering die attach, which is one of the power module packaging process, is receiving attention. In this study, we will introduce the recent research trends on the Ag sintering die attach process. The effects of sintering parameters on the bonding properties and methodology on the exact physical properties of Ag sintered layer by the realization 3D image are discussed. In addition, trends in thermal shock and power cycle reliability test results for power module are discussed.

Numerical Comparative Study on the Thermal Runaway of NCM/LFP Batteries of the Same Geometry (동일 형태의 NCM/LFP 배터리의 열폭주 현상에 대한 수치해석적 비교 연구)

  • Myung-Bo Gang;Woo-Young Kim;Nam-Jin Kim
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.18 no.4
    • /
    • pp.1-11
    • /
    • 2022
  • In this study, the thermal runaway of NCM and LFP batteries were compared and analyzed through numerical analysis under various conditions. Comparing the thermal runaway of the NCM622 (18650) battery cell and the LFP (18650) battery cell through oven test simulation, the LFP battery did not show thermal runaway, whereas the NCM622 battery temperature increased to 710℃ in 12 minutes. To observe the thermal runaway and propagation of the prismatic LFP battery cell, the internal temperature was set at 200℃ and the oven test simulation was conducted. It was found that thermal runaway occurred at 391℃ after 47 minutes. As a result of observing thermal runaway propagation by placing five NCM622 and LFP battery cells, the thermal runaway propagation was clearly observed in the case of the NCM622 battery, but in the case of the LFP battery, thermal runaway was not observed after the first cell. From the third battery cell, it was confirmed that the temperature change was very insignificant, and through this, it is considered that the LFP battery is relatively safe compared to the NCM battery in terms of the thermal runaway propagation of the battery.

A Study on the Design Method of Magnetizing Yoke Circuit Constant of 200kJ Magnetizer for Rotor Magnetization of High Capacity Permanent Magnet Motors (고용량 영구자석형 모터의 회전자 착자를 위한200 kJ급 착자기의 착자요크 회로정수 설계 방법에 관한 연구)

  • Jeong Minuk;SoongKeun Lee;GwonHu Baek;TaeKue Kim
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.28 no.2
    • /
    • pp.21-30
    • /
    • 2023
  • As the adoption and high-performance enhancement of Electric Vehicles continue, the demand for high-output motors and high-capacity Magnetizer for producing large-scale IPMSM is increasing. The maximum peak current of the magnetization and the capacitor discharge time, which are important factors in the magnetization process, are determined by the circuit constants of the magnetizer. In this paper, we analyze the magnetizing system using MATLAB SIMULINK to design the circuit constant of the magnetizing yoke for magnetizing design and present the design procedure for Design the circuit constant. As a result, the parameters of the magnetizing yoke were derived to be 0.015[ohm] and 0.035[mH] based on the capacitance of 15,000[uF] and voltage of 5,000[V].

A Study on the prediction of SOH estimation of waste lithium-ion batteries based on SVM model (서포트 벡터 머신 기반 폐리튬이온전지의 건전성(SOH)추정 예측에 관한 연구)

  • KIM SANGBUM;KIM KYUHA;LEE SANGHYUN
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.3
    • /
    • pp.727-730
    • /
    • 2023
  • The operation of electric automatic windows is used in harsh environments, and the energy density decreases as charging and discharging are repeated, and as soundness deteriorates due to damage to the internal separator, the vehicle's mileage decreases and the charging speed slows down, so about 5 to 10 Batteries that have been used for about a year are classified as waste batteries, and for this reason, as the risk of battery fire and explosion increases, it is essential to diagnose batteries and estimate SOH. Estimation of current battery SOH is a very important content, and it evaluates the state of the battery by measuring the time, temperature, and voltage required while repeatedly charging and discharging the battery. There are disadvantages. In this paper, measurement of discharge capacity (C-rate) using a waste battery of a Tesla car in order to predict SOH estimation of a lithium-ion battery. A Support Vector Machine (SVM), one of the machine models, was applied using the data measured from the waste battery.

Effect of Electron Beam Irradiation on the Opto-Electrical and Transparent Heater Property of ZnO/Cu/ZnO Thin Films for the Electric Vehicle Application (전자빔 조사에 따른 ZnO/Cu/ZnO 박막의 전기광학적 특성 및 전기자동차용 투명 발열체 특성)

  • Yeon-Hak Lee;Min-Sung Park;Daeil Kim
    • Korean Journal of Materials Research
    • /
    • v.33 no.11
    • /
    • pp.497-501
    • /
    • 2023
  • ZnO/Cu/ZnO (ZCZ) thin films were deposited at room temperature on a glass substrate using direct current (DC) and radio frequency (RF, 13.56 MHz) magnetron sputtering and then the effect of post-deposition electron irradiation on the structural, optical, electrical and transparent heater properties of the films were considered. ZCZ films that were electron beam irradiated at 500 eV showed an increase in the grain sizes of their ZnO(102) and (201) planes to 15.17 nm and 11.51 nm, respectively, from grain sizes of 13.50 nm and 10.60 nm observed in the as deposited films. In addition, the film's optical and electrical properties also depended on the electron irradiation energies. The highest opto-electrical performance was observed in films electron irradiated at 500 eV. In a heat radiation test, when a bias voltage of 18 V was applied to the film that had been electron irradiated at 500 eV, its steady state temperature was about 90.5 ℃. In a repetition test, it reached the steady state temperature within 60 s at all bias voltages.