DOI QR코드

DOI QR Code

건식 공정을 통한 리튬이차전지의 재활용 연구 동향

Overview on Pyrometallurgical Recycling Process of Spent Lithium-ion Battery

  • 박은미 (한국생산기술연구원 뿌리산업기술연구소) ;
  • 한철웅 (한국생산기술연구원 뿌리산업기술연구소) ;
  • 손성호 (한국생산기술연구원 뿌리산업기술연구소) ;
  • 이만승 (목포대학교 신소재공학과) ;
  • 김용환 (한국생산기술연구원 뿌리산업기술연구소)
  • Park, Eunmi (Korea Institute of Industrial Technology) ;
  • Han, Chulwoong (Korea Institute of Industrial Technology) ;
  • Son, Seong Ho (Korea Institute of Industrial Technology) ;
  • Lee, Man Seung (Department of Advanced Materials Science and Engineering, Institute of Rare Metal, Mokpo National University) ;
  • Kim, Yong Hwan (Korea Institute of Industrial Technology)
  • 투고 : 2022.06.02
  • 심사 : 2022.06.14
  • 발행 : 2022.06.30

초록

리튬이차전지의 수요는 1990년대 이후로 휴대용 전자 기기 시장과 함께 지속적으로 증가되어 왔으며, 최근 전기 자동차 시장의 급격한 확장에 따라 리튬이차전지 또한 전 세계적으로 수요가 급증하였다. 이는 가까운 미래에 천연자원으로부터의 리튬 공급량을 앞설 것이며, 리튬 자원 수급의 불안정을 초래할 수 있다. 지속적으로 축적되는 수명이 다 한 폐전지 또한 환경적으로 큰 문제를 야기할 수 있다. 이러한 문제를 해결하기 위해, 사용된 리튬이차전지의 재활용은 매우 중요한 기술적 과제이다. 본 연구에서는 건식 공정을 이용한 리튬이차전지의 재활용 공정과 함께 리튬 회수를 위한 추가 공정에 대해 조사하였다. 전지 재활용을 위한 건식 제련의 지속적인 연구는 리튬 및 유가 금속의 회수율을 크게 향상시켜 전기 자동차 및 휴대용 전자기기의 필수 부품인 리튬이차전지의 시장 안정화에 크게 기여할 것이다.

The global demand for lithium-ion batteries (LIBs) has been continuously increasing since the 1990s along with the growth of the portable electronic device market. Of late, the rapid growth of the electric vehicle market has further accelerated the demand for LIBs. The demand for the LIBs is expected to surpass the supply of lithium from natural resources in the near future, posing a risk to the global lithium supply chain. Moreover, the continuous accumulation of end-of-life LIBs is expected to cause serious environmental problems. To solve these problems, recycling the spent LIBs must be viewed as a critical technological challenge that must be urgently addressed. In this study, recycling LIBs using pyrometallurgical processes and post-processes for efficient lithium recovery are briefly reviewed along with the major accomplishments in the field and current challenges.

키워드

과제정보

본 연구는 2020년도 산업통상자원부 및 산업기술평가관리원(KEIT) 연구비 지원(과제번호 : 20011183)에 의한 연구 결과로서 이에 감사드립니다.

참고문헌

  1. Xie, J. and Y.-C. Lu, 2020 : A retrospective on lithium-ion batteries, Nature Communications, 11(1), pp.2499.
  2. Dunn, J.B., L. Gaines, J. Sullivan, et al., 2012 : Impact of Recycling on Cradle-to-Gate Energy Consumption and Greenhouse Gas Emissions of Automotive Lithium-Ion Batteries, Environmental Science & Technology, 46(22), pp.12704-12710. https://doi.org/10.1021/es302420z
  3. Bernardes, A.M., D.C.R. Espinosa, and J.A.S. Tenorio, 2004 : Recycling of batteries: a review of current processes and technologies, Journal of Power Sources, 130(1), pp. 291-298. https://doi.org/10.1016/j.jpowsour.2003.12.026
  4. Choubey, P.K., K.-S. Chung, M.-s. Kim, et al., 2017 : Advance review on the exploitation of the prominent energy-storage element Lithium. Part II: From sea water and spent lithium ion batteries (LIBs), Minerals Engineering, 110, pp.104-121. https://doi.org/10.1016/j.mineng.2017.04.008
  5. Swain, B., 2016 : Separation and purification of lithium by solvent extraction and supported liquid membrane, analysis of their mechanism: a review, Journal of Chemical Technology & Biotechnology, 91(10), pp.2549-2562. https://doi.org/10.1002/jctb.4976
  6. Sohn, J.-S. and C.-K. Lee, 2003 : Technology Developments for Recycling of Lithium Battery Wastes, Resources Recycling, 12(1), pp.65-74.
  7. Dorella, G. and M.B. Mansur, 2007 : A study of the separation of cobalt from spent Li-ion battery residues, Journal of Power Sources, 170(1), pp.210-215. https://doi.org/10.1016/j.jpowsour.2007.04.025
  8. Chen, M., X. Ma, B. Chen, et al., 2019 : Recycling End-of-Life Electric Vehicle Lithium-Ion Batteries, Joule, 3(11), pp.2622-2646. https://doi.org/10.1016/j.joule.2019.09.014
  9. Costa, C.M., J.C. Barbosa, R. Goncalves, et al., 2021 : Recycling and environmental issues of lithium-ion batteries: Advances, challenges and opportunities, Energy Storage Materials, 37, pp.433-465. https://doi.org/10.1016/j.ensm.2021.02.032
  10. Shi, J., C. Peng, M. Chen, et al., 2019 : Sulfation Roasting Mechanism for Spent Lithium-Ion Battery Metal Oxides Under SO2-O2-Ar Atmosphere, JOM, 71(12), pp.4473-4482. https://doi.org/10.1007/s11837-019-03800-5
  11. Liu, P., L. Xiao, Y. Tang, et al., 2019 : Study on the reduction roasting of spent LiNixCoyMnzO2 lithium-ion battery cathode materials, Journal of Thermal Analysis and Calorimetry, 136(3), pp.1323-1332. https://doi.org/10.1007/s10973-018-7732-7
  12. Winslow, K.M., S.J. Laux, and T.G. Townsend, 2018 : A review on the growing concern and potential management strategies of waste lithium-ion batteries, Resources, Conservation and Recycling, 129, pp.263-277. https://doi.org/10.1016/j.resconrec.2017.11.001
  13. Zheng, X., Z. Zhu, X. Lin, et al., 2018 : A Mini-Review on Metal Recycling from Spent Lithium Ion Batteries, Engineering, 4(3), pp.361-370. https://doi.org/10.1016/j.eng.2018.05.018
  14. Makuza, B., Q. Tian, X. Guo, et al., 2021 : Pyrometallurgical options for recycling spent lithium-ion batteries: A comprehensive review, Journal of Power Sources, 491, pp.229622.
  15. Han, C.W., S.H. Son, M.-S. Lee, et al., 2019 : Study on the Pyro-metallurgical Process for Recovery of Valuable Metal in the Sludge Originated from PCB Manufacturing Process, Resources Recycling, 28(6), pp.87-95.
  16. Friedrich, B. and L. Schwich, 2021 : New Science Based Concepts for Increased Efficiency in Battery Recycling, Metals, 11(4), pp.533.
  17. Arya, A. and A.L. Sharma, 2017 : Polymer electrolytes for lithium ion batteries: a critical study, Ionics, 23(3), pp. 497-540. https://doi.org/10.1007/s11581-016-1908-6
  18. Reddy, M.V., A. Mauger, C.M. Julien, et al., 2020 : Brief History of Early Lithium-Battery Development, Materials, 13(8), pp.1884.
  19. Yun, L., D. Linh, L. Shui, et al., 2018 : Metallurgical and mechanical methods for recycling of lithium-ion battery pack for electric vehicles, Resources, Conservation and Recycling, 136, pp.198-208. https://doi.org/10.1016/j.resconrec.2018.04.025
  20. Lv, W., Z. Wang, H. Cao, et al., 2018 : A Critical Review and Analysis on the Recycling of Spent Lithium-Ion Batteries, ACS Sustainable Chemistry & Engineering, 6(2), pp.1504-1521. https://doi.org/10.1021/acssuschemeng.7b03811
  21. Mohanty, A., S. Sahu, L.B. Sukla, et al., 2021 : Application of various processes to recycle lithium-ion batteries (LIBs): A brief review, Materials Today: Proceedings.
  22. Assefi, M., S. Maroufi, Y. Yamauchi, et al., 2020 : Pyrometallurgical recycling of Li-ion, Ni-Cd and Ni-MH batteries: A minireview, Current Opinion in Green and Sustainable Chemistry, 24, pp.26-31. https://doi.org/10.1016/j.cogsc.2020.01.005
  23. Hu, J., J. Zhang, H. Li, et al., 2017 : A promising approach for the recovery of high value-added metals from spent lithium-ion batteries, Journal of Power Sources, 351, pp.192-199. https://doi.org/10.1016/j.jpowsour.2017.03.093
  24. Li, J., P. Shi, Z. Wang, et al., 2009 : A combined recovery process of metals in spent lithium-ion batteries, Chemosphere, 77(8), pp.1132-1136. https://doi.org/10.1016/j.chemosphere.2009.08.040
  25. Shin, S.M., N.H. Kim, J.S. Sohn, et al., 2005 : Development of a metal recovery p rocess from Li-ion b attery wastes, Hydrometallurgy, 79(3), pp.172-181. https://doi.org/10.1016/j.hydromet.2005.06.004
  26. Lain, M.J., 2001 : Recycling of lithium ion cells and batteries, Journal of Power Sources, 97-98, pp.736-738. https://doi.org/10.1016/S0378-7753(01)00600-0
  27. Lee, C.K. and K.-I. Rhee, 2002 : Preparation of LiCoO2 from spent lithium-ion batteries, Journal of Power Sources, 109(1), pp.17-21. https://doi.org/10.1016/S0378-7753(02)00037-X
  28. Lombardo, G., B. Ebin, M.R. St. J. Foreman, et al., 2020 : Incineration of EV Lithium-ion batteries as a pretreatment for recycling - Determination of the potential formation of hazardous by-products and effects on metal compounds, Journal of Hazardous Materials, 393, pp.122372.
  29. Lombardo, G., B. Ebin, M.R. St. J. Foreman, et al., 2019 : Chemical Transformations in Li-Ion Battery Electrode Materials by Carbothermic Reduction, ACS Sustainable Chemistry & Engineering, 7(16), pp.13668-13679. https://doi.org/10.1021/acssuschemeng.8b06540
  30. Uwadiale, G.G.O.O., 1992 : Magnetizing Reduction of Iron Ores, Mineral Processing and Extractive Metallurgy Review, 11(1-2), pp.1-19. https://doi.org/10.1080/08827509208914211
  31. Mao, J., J. Li, and Z. Xu, 2018 : Coupling reactions and collapsing model in the roasting process of recycling metals from LiCoO2 batteries, Journal of Cleaner Production, 205, pp.923-929. https://doi.org/10.1016/j.jclepro.2018.09.098
  32. Kang, Y., 2019 : Desiliconisation and Dephosphorisation Behaviours of Various Oxygen Sources in Hot Metal Pre-Treatment, Metals, 9(2), pp.251.
  33. Jie, Y., S. Yang, Y. Li, et al., 2020 : Oxidizing Roasting Behavior and Leaching Performance for the Recovery of Spent LiFePO4 Batteries, Minerals, 10(11), pp.949.
  34. Georgi-Maschler, T., T., B. Friedrich, R. Weyhe, et al., 2012 : Development of a recycling process for Li-ion batteries, Journal of Power Sources, 207, pp.173-182. https://doi.org/10.1016/j.jpowsour.2012.01.152
  35. Li, J., G. Wang, and Z. Xu, 2016 : Environmentally-friendly oxygen-free roasting/wet magnetic separation technology for in situ recycling cobalt, lithium carbonate and graphite from spent LiCoO2/graphite lithium batteries, Journal of Hazardous Materials, 302, pp.97-104. https://doi.org/10.1016/j.jhazmat.2015.09.050
  36. Meshram, P., B.D. Pandey, and T.R. Mankhand, 2015 : Recovery of valuable metals from cathodic active material of spent lithium ion batteries: Leaching and kinetic aspects, Waste Management, 45, pp.306-313. https://doi.org/10.1016/j.wasman.2015.05.027
  37. Hu, X., E. Mousa, and G. Ye, 2021 : Recovery of Co, Ni, Mn, and Li from Li-ion batteries by smelting reduction - Part II: A pilot-scale demonstration, Journal of Power Sources, 483, pp.229089.
  38. Tytgat, J., 2013 : The Recycling Efficiency of Li-ion EV batteries according to the European Commission Regulation, and the relation with the End-of-Life Vehicles Directive recycling rate, World Electric Vehicle Journal, 6(4), pp.1039-1047. https://doi.org/10.3390/wevj6041039
  39. Wcislo, Z., A. Michaliszyn, and A. Baka, 2012 : Role of slag in the steel refining process in the ladle, Journal of achievements in materials and manufacturing engineering, 55(2), pp.390-395.
  40. Ellingham, H.J., 1944 : Reducibility of oxides and sulphides in metallurgical processes, J. Soc. Chem. Ind, 63(5), pp.125-160. https://doi.org/10.1002/jctb.5000630501
  41. Siafakas, D., T. Matsushita, A.E.W. Jarfors, et al., 2018 : Viscosity of SiO2-CaO-Al2O3 Slag with Low Silica - Influence of CaO/Al2O3, SiO2/Al2O3 Ratio, ISIJ International, 58(12), pp.2180-2185. https://doi.org/10.2355/isijinternational.ISIJINT-2018-381
  42. Avarmaa, K., L. Klemettinen, H. O'Brien, et al., 2021 : Solubility of Palladium in Alumina-Iron Silicate Melts, JOM, 73(6), pp.1871-1877. https://doi.org/10.1007/s11837-021-04672-4
  43. Ren, G.-x., S.-w. Xiao, M.-q. Xie, et al., 2017 : Recovery of valuable metals from spent lithium ion batteries by smelting reduction process based on FeO-SiO2-Al2O3 slag system, Transactions of Nonferrous Metals Society of China, 27(2), pp.450-456. https://doi.org/10.1016/S1003-6326(17)60051-7
  44. Baojun, Z., H. Peter, and J. Eugene, 2013 : Effects of CaO, Al2O3 and MgO on liquidus temperatures of copper smelting and converting slags under controlled oxygen partial pressures, Journal of Mining and Metallurgy, Section B: Metallurgy, 49(2).
  45. Dang, H., N. Li, Z. Chang, et al., 2020 : Lithium leaching via calcium chloride roasting from simulated pyrometallurgical slag of spent lithium ion battery, Separation and Purification Technology, 233, pp.116025.
  46. Guoxing, R., et al. Recovery of Valuable Metals from Spent Lithium-Ion Batteries by Smelting Reduction Process Based on MnO-SiO2-Al2O3 Slag System. in Advances in Molten Slags, Fluxes, and Salts : Proceedings of the 10th International Conference on Molten Slags, Fluxes and Salts 2016. 2016. Cham : Springer International Publishing.
  47. Barbosa, L.I., G. Valente, R.P. Orosco, et al., 2014 : Lithium extraction from β-spodumene through chlorination with chlorine gas, Minerals Engineering, 56, pp.29-34. https://doi.org/10.1016/j.mineng.2013.10.026
  48. Jena, P.K. and E.A. Brocchi, 1997 : Metal Extraction Through Chlorine Metallurgy, Mineral Processing and Extractive Metallurgy Review, 16(4), pp.211-237. https://doi.org/10.1080/08827509708914136
  49. Barbosa, L.I., J.A. Gonzalez, and M.d.C. Ruiz, 2015 : Extraction of lithium from β-spodumene using chlorination roasting with calcium chloride, Thermochimica Acta, 605, pp.63-67. https://doi.org/10.1016/j.tca.2015.02.009
  50. Dang, H., B. Wang, Z. Chang, et al., 2018 : Recycled Lithium from Simulated Pyrometallurgical Slag by Chlorination Roasting, ACS Sustainable Chemistry & Engineering, 6(10), pp.13160-13167. https://doi.org/10.1021/acssuschemeng.8b02713
  51. Yan, Q.-x., X.-h. Li, Z.-x. Wang, et al., 2012 : Extraction of lithium from lepidolite using chlorination roasting-water leaching process, Transactions of Nonferrous Metals Society of China, 22(7), pp.1753-1759. https://doi.org/10.1016/S1003-6326(11)61383-6
  52. Xiao, J., J. Li, and Z. Xu, 2017 : Recycling metals from lithium ion battery by mechanical separation and vacuum metallurgy, Journal of Hazardous Materials, 338, pp.124-131. https://doi.org/10.1016/j.jhazmat.2017.05.024
  53. Xiao, J., J. Li, and Z. Xu, 2017 : Novel Approach for in Situ Recovery of Lithium Carbonate from Spent Lithium Ion Batteries Using Vacuum Metallurgy, Environmental Science & Technology, 51(20), pp.11960-11966. https://doi.org/10.1021/acs.est.7b02561
  54. Xiao, S., G. Ren, M. Xie, et al., 2017 : Recovery of Valuable Metals from Spent Lithium-Ion Batteries by Smelting Reduction Process Based on MnO-SiO2-Al2O3 Slag System, Journal of Sustainable Metallurgy, 3(4), pp.703-710. https://doi.org/10.1007/s40831-017-0131-7
  55. Maroufi, S., M. Assefi, R. Khayyam Nekouei, et al., 2020 : Recovery of lithium and cobalt from waste lithium-ion batteries through a selective isolation-suspension approach, Sustainable Materials and Technologies, 23, pp.e00139.
  56. Wang, W., Y. Han, T. Zhang, et al., 2019 : Alkali Metal Salt Catalyzed Carbothermic Reduction for Sustainable Recovery of LiCoO2 : Accurately Controlled Reduction and Efficient Water Leaching, ACS Sustainable Chemistry & Engineering, 7(19), pp.16729-16737. https://doi.org/10.1021/acssuschemeng.9b04175
  57. Wang, W., Y. Zhang, X. Liu, et al., 2019 : A Simplified Process for Recovery of Li and Co from Spent LiCoO2 Cathode Using Al Foil As the in Situ Reductant, ACS Sustainable Chemistry & Engineering, 7(14), pp.12222-12230.
  58. Wang, D., X. Zhang, H. Chen, et al., 2018 : Separation of Li and Co from the active mass of spent Li-ion batteries by selective sulfating roasting with sodium bisulfate and water leaching, Minerals Engineering, 126, pp.28-35. https://doi.org/10.1016/j.mineng.2018.06.023
  59. Peng, C., F. Liu, Z. Wang, et al., 2019 : Selective extraction of lithium (Li) and preparation of battery grade lithium carbonate (Li2CO3) from spent Li-ion batteries in nitrate system, Journal of Power Sources, 415, pp.179-188. https://doi.org/10.1016/j.jpowsour.2019.01.072
  60. Fan, E., L. Li, J. Lin, et al., 2019 : Low-Temperature Molten-Salt-Assisted Recovery of Valuable Metals from Spent Lithium-Ion Batteries, ACS Sustainable Chemistry & Engineering, 7(19), pp.16144-16150. https://doi.org/10.1021/acssuschemeng.9b03054