• Title/Summary/Keyword: Electric breakdown

Search Result 686, Processing Time 0.03 seconds

Evaluation of Insulating Reliability in Epoxy Composites by DC Dielectric Breakdown Properties (DC 절연파괴 특성을 이용한 Epoxy 복합체의 절연 신뢰도 평가)

  • 임중관;박용필;김정호
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.92-95
    • /
    • 2001
  • The dielectric breakdown of epoxy composites used for transformers was experimented and then its data were simulated by Weibull distribution probability. First of all, speaking of dielectric breakdown properties, the more hardener increased the stronger breakdown strength at low temperature because of cross-linked density by the virtue of ester radical. The breakdown strength of specimens with filler was lower than it of non-filler specimens because it is believed that the adding filler forms interface and charge is accumulated in it, therefore the molecular motility is raised and the electric field is concentrated. In the case of filled specimens with treating silane, the breakdown strength become much higher Finally, from the analysis of weibull distribution, it was confirmed that as the allowed breakdown probability was given by 0.1[%], the applied field value needed to be under 21.5 [Mv/cm].

  • PDF

Analysis of Electrical Degradation in Epoxy Composites by Dielectric Breakdown Properties (절연파괴 특성을 이용한 Epoxy 복합체의 전기적 열화 분석)

  • 최철호;박용필;임중관
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.414-419
    • /
    • 2002
  • The dielectric breakdown of epoxy composites used for transformers was experimented and then its data were simulated by Weibull distribution probability. First of all, speaking of dielectric breakdown properties, the more hardener increased the stronger breakdown strength at low temperature because of cross-linked density by the virtue of ester radical. The breakdown strength of specimens with filler was lower than it of non-filler specimens because it is believed that the adding filler forms interface and charge is accumulated in it, therefore the molecular motility is raised and the electric field is concentrated. In the case of (idled specimens with treating silane, the breakdown strength become much higher Finally, from the analysis of weibull distribution, it was confirmed that as the allowed breakdown probability was given by 0.1[%], the applied field value needed to be under 21.5 MV/cm.

  • PDF

Electrical Breakdown Characteristics of LN2 under Simulated Quenching Conditions for Application of HTS Apparatus (고온초전도 기기응용을 위한 모의 \ulcorner치 환경에서 액체질소의 절연파괴 특성)

  • 백승명;정종만;김상현
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.11
    • /
    • pp.985-990
    • /
    • 2002
  • The electrical breakdown characteristics of liquid nitrogen(LN$\sub$2/) were studied under simulated quenching conditions for application of HTS apparatus. The experimental results for various quenching condition revealed that the breakdown voltage of LN$\sub$2/ with bubble flow velocity and gap spacing. In the case, breakdown voltage decreases gradually with the bubble velocity. When it is bubble velocity from 0 to 1 $\ell$ /min, breakdown voltage rapidly decreases but decreases from 2 $\ell$/min to 10 $\ell$/min slowly. The breakdown voltage for vertical electrode arrangement is higher than that for horizontal electrode arrangement. Also, it did a electric field and potential distribution interpreting at the liquid nitrogen when the bubble existed. The plots of equipotential lines for three cases are also shown.

Evaluation of Electrical Degradation in Epoxy Composites by Dielectric Breakdown Properties (절연파괴 특성을 이용한 Epoxy 복합체의 전기적 열화 평가)

  • Lim, Jung-Kwan;Park, Yong-Pil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05c
    • /
    • pp.212-217
    • /
    • 2002
  • The dielectric breakdown of epoxy composites used for transformers was experimented and then its data were simulated by Weibull distribution probability. First of all, speaking of dielectric breakdown properties, the more hardener increased the stronger breakdown strength at low temperature because of cross-linked density by the virtue of ester radical. The breakdown strength of specimens with filler was lower than it of non-filler specimens because it is believed that the adding filler forms interface and charge is accumulated in it, therefore the molecular motility is raised and the electric field is concentrated. In the case of filled specimens with treating silane, the breakdown strength become much higher Finally, from the analysis of weibull distribution, it was confirmed that as the allowed breakdown probability was given by 0.1[%], the applied field value needed to be under 21.5 MV/cm.

  • PDF

Dynamic Electrical Breakdown Characteristics of Liquid Nitrogen (액체 $N_2$의 동적 절연파괴 특성)

  • 김영석;정종만;곽민환;백승명;장현만;김상현
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.06a
    • /
    • pp.359-362
    • /
    • 1998
  • Electrical breakdown characteristics of liquid nitrogen(LNd used as both coolant and insulator for high $T_c$ superconductor system is very important. This paper presents dynamic breakdown characteristics of liquid nitrogen by quench penomena of thermal bubble under high electric field. As the result, the breakdown mechanism of $LN_2$ depends on thermal bubble effect. The breakdown voltage decreases slightly with increasing heating. In the Electrode arrangement, electrical breakdown voltage of horizontal arrangement appears lower than that of vertical arrangement.

  • PDF

The Study for the Breakdown Characteristics of Interface between LSR-XLPE, EPDM-XLPE by the Interfacial Treatment Condition (LSR-XLPE, EPDM-XLPE 이종계면에서의 계면처리에 따른 절연파괴특성)

  • Cho, Han-Goo;Lee, Yu-Jung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.460-461
    • /
    • 2007
  • In this paper, we studied the properties of a cable insulate capacity between surfaces with the variation of the interfacial breakdown. As a function of silicon oil, the variation of pressure and interfacial roughness were investigated. The insulate trouble of a power cable is out of the interfacial parts, which breakdown the insulate breakdown capacity in a power cable. In this study, the analysis of electric field and the phenomenon of interfacial breakdown were improved by increased interfacial pressure, decreased surface roughness, and oil. And It was shown that interfacial breakdown LSR-XLPE insulators is higher that of EPDM-XLPE.

  • PDF

Breakdown Characteristics of Soils Caused by Impulse Currents (임펄스전류에 의한 토양의 절연파괴특성)

  • Lee, Bok-Hee;Lee, Kang-Soo;Kim, Hoe-Gu
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.4
    • /
    • pp.103-109
    • /
    • 2010
  • In this paper, breakdown characteristics of soil in a coaxial cylindrical electrode system stressed by impulse currents were experimentally investigated. The breakdown voltage and current waveforms for 4 types of soils were measured, and the threshold electric field intensity, the time-lag to breakdown and the voltage-current (V-I) curves were analyzed and discussed. As a result, the breakdown voltage and current waveforms are strongly dependent on the grain size of soil, and the voltage and current waveforms for gravel and sand differ from those for silt and loess. The threshold electric field intensity Ec is increased in the order of gravel, sand, loess and silt. The V-I curves for all test samples show a 'cross-closed loop' of ${\infty}$-shape. Also, the time-lag to breakdown for gravel and sand are longer than those for silt and loess. It is expected that the results presented in this paper will provide useful information on the design of improving transient performance of a grounding electrode system subjected to lightning current considering the soil ionization.

Analysis of Insulating Reliability in Epoxy Composites (Epoxy 복합체의 절연 신뢰도 해석)

  • 임중관;천민우;박용필
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2001.10a
    • /
    • pp.724-728
    • /
    • 2001
  • In this study, the dielectric breakdown of epoxy composites used for transformers was experimented and then its data were simulated by Weibull distribution probability. The dielectric breakdown characteristics origin in epoxy composites were examined and various effects of dielectric breakdown on epoxy composites were also discussed. As a result, first of all, speaking of dielectric breakdown properties, the more hardener increased the stronger breakdown strength at low temperature because of cross-linked density by the virtue of ester radical. And the breakdown strength of specimens with filler was lower than it of non-filler specimens because it is believed that the adding filler forms interface and charge is accumulated in it, therefore the molecular motility is raised, the electric field is concentrated, and the acceleration of electron and the growth of electron avalanche are early accomplished. In the case of filled specimens with treating silane, the breakdown strength become much higher since this suggests that silane coupling agent improves interfacial combination and relaxs electric field concentration. Finally, from the analysis of weibull distribution, it was confirmed that as the allowed breakdown probability was given by 0.1%, the applied field value needed to be under 21.5㎹/cm.

  • PDF

A Study on the Detection of Indication of Accident in Electric Equipments with Incandescent Lamps Using Current Monitor (전류 모니터를 이용한 백열등 부하 전기설비에서 사고 징후 검출에 관한 연구)

  • Jee, Seung-Wook;Ok, Kyung-Gea;Kim, Shi-Kuk;Lee, Chun-Ha;Lee, Kwang-Sik
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.1
    • /
    • pp.109-115
    • /
    • 2009
  • This paper describes an early detection for indication of electric accident using current waveform which is measured in electric equipments consisted incandescent lamps. At first, it analyzes characteristics of current monitor in resistive electric circuit. In second, the electric equipment is consisted of incandescent lamps. And the electric accident is simulation of tracking according to KS C IEC(Korea Standard C International Electrostatic Commission) 60112 at some part of the electric equipment. The indication of the electrical accident is detected to analyzing current waveform measured by current monitor. As the tracking breakdown, electric accident, processes, as current pulse is bigger and ratio of appearance also is increased irrespective of amount of load.

Two-dimensional Simulation Study on Optimization of Gate Field Plate Structure for High Breakdown Voltage AlGaN/GaN-on-Si High Electron Mobility Transistors (고내압 전력 스위칭용 AlGaN/GaN-on-Si HEMT의 게이트 전계판 구조 최적화에 대한 이차원 시뮬레이션 연구)

  • Lee, Ho-Jung;Cho, Chun-Hyung;Cha, Ho-Young
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.12
    • /
    • pp.8-14
    • /
    • 2011
  • The optimal geometry of the gate field plate in AlGaN/GaN-on-Si HEMT has been proposed using two-dimensional device simulation to achieve a high breakdown voltage for a given gate-to-drain distance. It was found that the breakdown voltage was drastically enhanced due to the reduced electric field at the gate corner when a gate field plate was employed. The electric field distribution at the gate corner and the field plate edge was investigated as functions of field plate length and insulator thickness. According to the simulation results, the electric field at the gate corner can be successfully reduced even with the field plate length of 1 ${\mu}m$. On the other hand, when the field plate length is too long, the distance between field plate and drain electrode is reduced below a critical level, which eventually lowers the breakdown voltage. The highest breakdown voltage was achieved with the field plate length of 1 ${\mu}m$. According to the simulation results varying the $SiN_x$ film thickness for the fixed field plate length of 1 ${\mu}m$, the optimum thickness range of the $SiN_x$ film was 200 - 300 nm where the electric field strength at the field plate edge counterbalances that of the gate corner.