• Title/Summary/Keyword: Electric apparatus

Search Result 321, Processing Time 0.021 seconds

The Development and Evaluation of Sidestream Smoke Collecting Apparatus Compatible for Linear Smoking Machine (다채널 선형자동흡연장치 부착형 부류연 포집장치의 개발과 평가)

  • Kim Hyo-Keum;Hwang Keon- Jung;Ji Sang-Un;Lee John-Tae;Rhee Moon-Soo
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.27 no.1 s.53
    • /
    • pp.120-126
    • /
    • 2005
  • The Fishtail Chimney system mounted on 1 channel smoking machine is not appropriate for the routine analysis of sidestream smoke, because of its low repeatability and very long time required for smoke collection. To overcome this inconvenience, we developed a new sidestream smoke collecting apparatus compatible for 8 channel linear smoking machine. An electric motor driven stroke and automatic control system were adopted in this device to maximize convenience and efficiency of its operation. Also, we carried out the international collaborative study on monitoring sidestream smoke analysis to test the performance of this system. From the statistical analysis of the data obtained in our laboratory and other participating labs, it has been indicated that the newly developed sidestream smoke collection apparatus could be applicable to the routine analysis of sidestream smoke.

An Experimental Study on the Minimum Ignition Energy in Low Voltage Spark Discharge by Electrode Material (방전전극 재질과 최소점화에너지에 관한 실험 연구)

  • Choi, Sang-Won
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.3
    • /
    • pp.63-70
    • /
    • 2012
  • In the hazardous areas where explosive gases, vapor or mists exist, electrical apparatus and installations must be the explosion-proof construction to prevent or limit the danger of the ignition of potentially explosive atmosphere. In Korea, nine types of protection have been specified in the government regulations at present: flameproof enclosure, pressurization, oil immersion, increased safety, intrinsic safety, non-incendive, powder filling, encapsulation, and special types. Among these types, the intrinsic safety has the construction which limit or by-pass igniting the electric energy using electronic devices. This type has lots of merits but at the same time requires a high-degree of technology. In this paper, we investigated several dominating factors which affect the minimum ignition energy; this energy plays a very important role in design and evaluation of the intrinsic safety type electrical apparatus. Electrode material, which is one of the most important factors, was intensively studied for the five sorts of material(Al, Cd, Mg, Sn, and Zn) with performing experiment in a low-voltage inductive circuit using IEC-type(International Electro-technical Commission) spark apparatus. The experimental results show that the minimum ignition energy of electrode material is varied: highest in Cd and lowest in Sn. We also confirmed the effect of electrode make-and-break speed.

Numerical Study of SF6 arc with Copper Contamination

  • Liau Vui-Kien;Lee Byeong-Yoon;Song Ki-Dong;Park Kyong-Yop
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.5C no.6
    • /
    • pp.233-241
    • /
    • 2005
  • The present model of a SF6 arc accounts for the copper vapour contamination from the electrodes inside a Laval nozzle of a circuit breaker. Steady state simulations have been done for the arc with electrode gap of 60mm and DC electric current of 500A, 1000A and 1500A for both cases with and without copper contamination. The effects of electrode polarity are considered for the arc current of 1000A. It was found out that evaporation of copper from the anode results in a cooling of the arc in a region close to the electrodes. The electrical potential across the electrodes is not sensitive to the presence of copper vapour, typically less than $4\%$ difference. Transient analysis has been done in order to obtain the arc properties at current zero. The arc current is increased linearly from -1000 to 0A when the upstream electrode is cathode with constant dI/dt of $27.0A/{\mu}s$ (or decreased linearly from 1000 to 0A when upstream electrode is anode). It has been predicted that the presence of copper vapour reduces the interruption capability of the breaker.

A Fundamental Investigation to Develope a Automatic Apparatus for Contamination Measurement (오손도 자동측정장치 개발을 위한 기초연구)

  • 최남호;한상옥
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.15 no.3
    • /
    • pp.74-82
    • /
    • 2001
  • To reduce the maintenance expense and the possibility of electric outage and/or accident, which causes the decrease in stability and reliability of transmission/distribution line, most of all, accurate measurement for the degree of contamination should be preceded. But the conventional method (brush wiping method), which is recommended in IEC 60815, has sow significant problem in the aspect of man power, expense, error, and so forth. In this investigation, we purpose the development of a new type automatic measuring apparatus, which could measure the degree of contamination on the surface of insulator in outdoor condition. To design and evaluate the apparatus, a FLUX 2D is used, and various laboratory tests, artificial contamination tests, were carried to proof the actual performance. With the result of these effort, we can get the meaningful conclusion to develope a new type automatic apparatus for contamination measurement.

  • PDF

A Heating Apparatus for Semiconductor Manufacturing using Direct Heating Method (직접 가열 방식을 이용한 반도체 제조용 히팅 장치)

  • Jung, Soon-Won;Koo, Kyung-Wan
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.57 no.4
    • /
    • pp.408-411
    • /
    • 2008
  • As to this research is new structure of the semiconductor substrate heating apparatus. The fast thermoresponsive according to the direct heating structure of the heating plate layer adhering closely to the floor side of a substrate and the fast heat loss minimization can be accomplished. Moreover, the contact area of the sheath heater, which is the heating plate layer built-in heating apparatus, is increased, so that it has more heating valid area. For this, it adheres closely to the substrate, in which the photosensitive film is coated and the heating plate layer, adhering closely to the floor side of a substrate the mica layer which adheres closely to the floor side of the upper heating plate layer in order to minimize an insulation and heat loss, and the lower part of the mica layer and it is comprised of the floor plate layer. The heating plate layer forms the continued groove portion over the floor side whole. The sheath heater for heating a substrate is inserted with the groove portion and the heating plate layer is comprised. It is confirmed that by using the new substrate heating structure, the temperature change of the heating plate against the time is observed. Then, there is the electric power saving effect of about 40% in comparison with the existing method.

A Study on the widthwise thickness uniformity of HTS wire using thickness gradient deposition technology

  • Gwantae Kim;Insung Park;Jeongtae Kim;Hosup Kim;Jaehun Lee;Hongsoo Ha
    • Progress in Superconductivity and Cryogenics
    • /
    • v.25 no.4
    • /
    • pp.24-27
    • /
    • 2023
  • Until now, many research activities have been conducted to commercialize high-temperature superconducting (HTS) wires for electric applications. Most of all researchers have focused on enhancing the piece length, critical current density, mechanical strength, and throughput of HTS wires. Recently, HTS magnet for generating high magnetic field shows degraded performance due to the deformation of HTS wire by high electro-magnetic force. The deformation can be derived from widthwise thickness non-uniformity of HTS wire mainly caused by wet processes such as electro-polishing of metal substrate and electro-plating of copper. Gradient sputtering process is designed to improve the thickness uniformity of HTS wire along the width direction. Copper stabilizing layer is deposited on HTS wire covered with specially designed mask. In order to evaluate the thickness uniformity of HTS wire after gradient sputtering process, the thickness distribution across the width is measured by using the optical microscope. The results show that the gradient deposition process is an effective method for improving the thickness uniformity of HTS wire.

Characteristics of Solenoid on the Shape for Electric Control Injector in Diesel Engine (디젤엔진 분사기용 솔레노이드의 형상에 따른 솔레노이드의 특성)

  • 조규학;라진홍;안수길
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.3
    • /
    • pp.405-411
    • /
    • 2003
  • An electric control fuel injector of a diesel engine injection systems is very important apparatus for fuel economy and emission control. It's performance was influenced by hydraulic contro1 of valve and solenoid especially the solenoid was important factor for operation and control of injector. In this paper. we made solenoids of 4 type. which changed the shape of armature and core. and measured magnetic force according to input current, and analyzed characteristics of solenoid on the shape through the test results.

The Hydraulic simulation and removal characteristics of Escherichia Coli for Ultraviolet rays.Ozone sterilization apparatus (자외선.오존 살균소독장치의 유체시뮬레이션 및 대장균 제거 특성)

  • Hwang, In-Ah;Lee, Hyun-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2005.10a
    • /
    • pp.169-172
    • /
    • 2005
  • The simulation of Hydraulic pressure distribution of discharge tube with globular beads and the removal characteristic of Escherichia coli by the discharge tube with globular beads were estimated. The removal characteristic of Escherichia coli was related to the input voltage because the electric field is increased according to input voltage. As the passing amount of test water in discharge tube is increased, the removal ratio of Escherichia coli was increased because passing numbers of electric field section is increased.

  • PDF

Effect of Electric Field Frequency on the AC Electrical Treeing Phenomena in an Epoxy/Reactive Diluent/Layered Silicate Nanocomposite

  • Park, Jae-Jun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.2
    • /
    • pp.87-90
    • /
    • 2014
  • The effects of electric field frequency on the ac electrical treeing phenomena in an epoxy/reactive diluent/layered silicate (1.5 wt%) were carried out, in needle-plate electrode arrangement. A layered silicate was exfoliated in an epoxy base resin, by using our ac electric field apparatus. To measure the treeing propagation rate, constant alternating current (AC) of 10 kV with three different electric field frequencies (60, 500 and 1,000 Hz) was applied to the specimen, in needle-plate electrode arrangement, at $30^{\circ}C$ of insulating oil bath. As the electric field frequency increased, the treeing propagation rate increased. At 500 Hz, the treeing propagation rate of the epoxy/PG/nanosilicate system was $0.41{\times}10^{-3}$ mm/min, which was 3.4 times slower than that of the epoxy/PG system. The electrical treeing morphology was dense bush type at 60 Hz; however, as the frequency increased, the bush type was changed to branch type, having few branches, with very slow propagation rate.

A Study of Large Capability of Underground Power Transmission Line, Environmental and High reliability (전력케이블 대 용량화에 따른 환경과의 조화 및 보수의 고 신뢰도화)

  • Chung, Moo-Young;Kwon, Byung-Il;Nam, Jeong-Se
    • Proceedings of the KIEE Conference
    • /
    • 1996.07c
    • /
    • pp.1841-1843
    • /
    • 1996
  • To meet recent increasing demand for electric power in large cities in Korea, and to improve reliability of the power supply. Especially, demand for electric power apparatus places great emphasis on not only function but also environmental factors. In this paper, environpolitics describes according to large capacity demand for extra high voltage underground transmission lines and high reliability of the power supply.

  • PDF