• 제목/요약/키워드: Elastic-Plastic Property

검색결과 49건 처리시간 0.02초

Nano-indentation 실험과 유한요소 해석을 연계한 재료의 탄소성 물성 평가법 개발 (A Method to Estimate Tensile Properties using Combined Nano-Indentation Tests and Finite Element Simulations)

  • 김윤재;송태광;박준협;한준희
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.503-504
    • /
    • 2006
  • Determination of elastic properties of nano-scale materials using nano-indentation tests is well established, but that of plastic properties is not yet clear. This paper presents a method to extract plastic properties from nano-indentation test, together with results from detailed elastic-plastic FE analysis. It shows that the plastic properties determined from this method are not unique, in the sense that a number of different plastic properties can give the same load-displacement response from nano-indentation test. possible ways to overcome such problems are discussed.

  • PDF

총열 및 포신의 팽창 변형에 관한 연구 (A Study on the Expansive Deformation of Rifle Barrel and Gun Barrel)

  • 김동욱;이재영;강영철
    • 한국군사과학기술학회지
    • /
    • 제3권2호
    • /
    • pp.7-14
    • /
    • 2000
  • In this paper, the possibility of plastic deformation of rifle and gun barrels is studied through the numerical methods. When a rifle or tank gun is fired, the expansive deformation of the barrel can occur by the explosive pressure and the thermal effect. Using the ABAQUS program, the stresses and displacements are computed for the elastic and elastic-plastic material property, and the possibility of plasticity deformation is investigated. In conclusion, rifle and tank gun barrel the plastic deformation occurred in some parts of the barrel

  • PDF

New experimental system for base-isolated structures with various dampers and limit aspect ratio

  • Takewaki, I.;Kanamori, M.;Yoshitomia, S.;Tsuji, M.
    • Earthquakes and Structures
    • /
    • 제5권4호
    • /
    • pp.461-475
    • /
    • 2013
  • A new experimental system of base-isolated structures is proposed. There are two kinds of dampers usually used in the base-isolated buildings, one is a viscous-type damper and the other is an elastic-plastic hysteretic-type damper. The base-isolated structure with a viscous damper and that with an elastic-plastic hysteretic damper are compared in this paper. The viscous damper is modeled by a mini piston and the elastic-plastic hysteretic damper is modeled by a low yield-point steel. The capacity of both dampers is determined so that the dissipated energies are equivalent at a specified deformation. When the capacity of both dampers is determined according to this criterion, it is shown that the response of the base-isolated structure with the elastic-plastic hysteretic damper is larger than that with the viscous damper. This characteristic is demonstrated through the comparison of the bound of the aspect ratio. It is shown that the bound of aspect ratio for the base-isolated structure with the elastic-plastic hysteretic damper is generally smaller than that with the viscous damper. When the base-isolated structure is subjected to long-duration input, the mechanical property of the elastic-plastic hysteretic damper deteriorates and the response of the base-isolated structure including that damper becomes larger than that with the viscous damper. The effect of this change of material properties on the response of the base-isolated structure is also investigated.

벌칙방법에 의한 마찰 접촉문제의 강소성 유한요소 모델링 (Rigid-Plastic FE Modeling of Frictional Contact Problems based on a Penalty Method)

  • 장동환;황병복
    • 소성∙가공
    • /
    • 제12권1호
    • /
    • pp.34-42
    • /
    • 2003
  • This paper presents a rigid-plastic finite element method to handle the frictional contact problem between two deformable bodies experiencing large deformation. The variational formulation combined with incremental quasi-static model is employed for treating the contact boundary condition. The frictional behavior of the model obeys Coulomb's law of friction. The proposed contact algorithms are classified into two categories, one for searching contacting nodes and the other for calculating contact forces at the contact surface. A slave node and master contact segment are defined using the geometric condition of finite elements on the contact interface. The penalty parameter is used to limit the penetration between contacting bodies, and the finite elements are coupled with contact boundary elements.us gates and cavity thicknesses. Through this study we have observed that the jetting is related to the die swell of material. This means that the jotting is strongly affected by the elastic flow property rather than the viscous flow property in viscoelastic characteristics of molten polymer. Different resins have different elastic properties, and elastic flow behavior depends on the shear rate of flow, i.e. injection speed. Large die swell would eliminate jetting however, the retardation of die swell would stimulate jetting. In the point of mole design, reducing the thickness ratio of cavity to gate can reduce or eliminate jetting regardless of amount of elasticity of polymer melt.

소성변형특성을 이용한 사실적인 직물 시뮬레이션 (Realistic Cloth Simulation using Plastic Deformation)

  • 오동훈;정문렬;송창근;이종완
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제12권3호
    • /
    • pp.208-217
    • /
    • 2006
  • 본 논문은 소성변형(plastic deformation)특성을 갖는 직물의 움직임을 시뮬레이션하는 기법을 제안한다. 소성은 탄성과 반대되는 개념으로, 물질이 외부의 힘에 의해 변형되었을 때, 초기상태로 완전히 회복되지 못하는 성질이다. 직물은 파티클 모델(particle model)을 이용하여 모델링하며, 파티클간의 상호작용은 바로 인접한 파티클간의 순차연결과 한 파티클 건너에 있는 파티클간의 교차연결을 설정함으로써 표현한다. 순차연결은 직물의 압축과 인장변형을, 교차연결은 직물의 굽힙변형을 표현한다. 연결은 스프링으로 모델링하는데, 순차연결은 탄성스프링으로, 교차연결은 변형정도에 따라, 탄성스프링 또는 소성스프링으로 모델링한다. 본 논문은 기존의 파티클 모델에서 사용하는 탄성스프링에 소성스프링을 추가하여 직물의 소성변형 현상을 표현한 것이다. 그 결과, 굽힘주름과 영구변형된 구김주름, 그리고 주름이 직물 전체에 고루 분포되는 현상을 시뮬레이션할 수 있었다. 연결의 탄성스프링과 소성스프링을 모델링할 때 직물운동방정식 수치해법의 안정성을 보장하기 위해 직물 시스템의 강성 메트릭스 (stiffness matrix)가 indefinite이 되지 않도록 주의를 기울였다.

CORRELATION BETWEEN J-INTEGRAL AND CMOD IN IMPACT BEHAVIOR OF 3-POINT BEND SPECIMEN

  • Han, M.S.;Cho, J.U.
    • International Journal of Automotive Technology
    • /
    • 제7권3호
    • /
    • pp.337-343
    • /
    • 2006
  • Numerical calculations are made in order to find a possible correlation between the J-integral and the crack mouth opening displacement(CMOD) in dynamic nonlinear fracture experiments of 3-point bend(3PB) specimens. Both elastic-plastic and elastic-viscoplastic materials are considered at different impact velocities. The J-integral may be estimated from the crack mouth opening displacement which can be measured directly from photographs taken during dynamic experiments.

선박의 비대칭 단면 특성에 대한 연구 (Study on Section Properties of Asymmetric-Sectioned Vessels)

  • 정준모;김영훈
    • 대한조선학회논문집
    • /
    • 제47권6호
    • /
    • pp.843-849
    • /
    • 2010
  • This paper presents definition of symmetry of a ship section where three symmetries are proposed: material, geometric, and load symmetries. Precise terminologies of centroid, moment plane, and neutral axis plane are also defined. It is suggested that force vector equilibrium as well as force equilibrium are necessary condition to determine new position of neutral axis due to translational and rotational mobility. It is also stated that new reference datum of ENMP(elastic neutral moment plane), PNMP(fully plastic moment plane), ENAP(elastic neutral axis plane), and INAP(inelastic neutral moment plane) are required to define asymmetric section properties such as second moment of area, elastic section modulus, yield moment, fully plastic moment, and ultimate moment. Since collision-induced damage and flooding-induced biaxial bending moment produce typical asymmetry of section, the section properties are calculated for a typical VLCC. Geometry asymmetry is determined from ABS and DNV rules and two moment planes of 0/30 degs are assumed for load asymmetry. It is proved that the property reduction ratios directly calculated from second moment of area are usually larger than area reduction ratio. Reduction ratio of ultimate moment capacity shows almost linearly proportional to area reduction ratio. Mobility of elastic and inelastic neutral axis planes is visually provided.

나노압입공정 해석에서 재료의 탄소성 특성 도출을 위한 대표변형률의 결정과 Dao의 Reverse 해석의 향상 (Improvement of Dao's Reverse Analysis and Determination of Representative Strain for Extracting Elastic-Plastic Properties of Materials in Analysis of Nanoindentation)

  • 이정민;이찬주;김병민
    • 대한기계학회논문집A
    • /
    • 제32권2호
    • /
    • pp.105-118
    • /
    • 2008
  • The newly developed analysis method for nanoindentation load-displacement curves are focused on not only obtaining elastic modulus and hardness values but also other mechanical properties, such as yield strength and strain hardening properties. Dao et al. developed a forward and reverse algorithm to extract the elasto-plastic properties of materials from the load-displacement curves obtained in nanoindentation test. These algorithms were only applicable for engineering metals (Poisson#s ratio 0.3) using the equivalent conical indenter of the Berkovich. However, the applicable metals are substantially limited because range of used in the finite element analysis is narrow. This study is designed to expand range of the applicable metals in the reverse algorithms established by Dao et al. and to improve the accuracy of that for extracting the elasto-plastic properties of materials. In this study, a representative strain was assumed to vary according to specific range of $E^*/{\sigma}_r$ and was defined as function of $E^*/{\sigma}_r$. Also, an initial unloading slope in reverse algorithms improved in this study was not considered as independent parameters of the load-displacement curves. The mechanical properties of materials for finite element analysis were modeled with the elastic modulus, E, the yield strength, ${\sigma}_y$, and the strain hardening exponents, n. We showed that the representative strain (0.033) suggested by Dao et al. was no longer applicable above the $E^*/{\sigma}_r$ of 400 and depended on values of $E^*/{\sigma}_r$. From these results, we constructed the dimensionless functions, in where the initial unloading slope was not included, for engineering metals up to $E^*/{\sigma}_r$ of 1500. These functions allow us to determine the mechanical properties with greater accuracy than Dao#s study.

플라스틱 핵 솔더볼의 열응력 해석에 관한 연구 (A Study on Thermal Stress Analysis of Plastic-Core Solder Balls)

  • 김환동;윤도영
    • 한국공작기계학회논문집
    • /
    • 제16권6호
    • /
    • pp.159-162
    • /
    • 2007
  • Recently, Pb-free solder ball technology, which is getting more significant in miniaturization of electronic equipment, and resolution of recent environmental problems, is necessary to be developed. A plastic-core solder ball is much promising in those considerations. Plastic-core solder balls have the tendency to replace the usual metal-core solder ball from low material cost and superior mechanical properties. The thermal effects, however, are important in manufacturing process, such as deposing micro-sized metal thin film on the spherical polymer surface. Furthermore plastic-core solder balls are easy to be broken due to CTE and elastic coefficient of material property from heat transfer. We propose technical computational investigations for the manufacturing design and the reliability of plastic-core solder ball from thermal stress analysis.

Material Property-Estimate Technique Based on Natural Frequency for Updating Finite Element Model of Orthotropic Beams

  • Kim, Kookhyun;Park, Sungju;Lee, Sangjoong;Hwang, Seongjun;Kim, Sumin;Lee, Yonghee
    • 한국해양공학회지
    • /
    • 제34권6호
    • /
    • pp.481-488
    • /
    • 2020
  • Composite materialsuch as glass-fiber reinforced plastic and carbon-fiber reinforced plastic (CFRP) shows anisotropic property and have been widely used for structural members and outfitings of ships. The structural safety of composite structures has been generally evaluated via finite element analysis. This paper presents a technique for updating the finite element model of anisotropic beams or plates via natural frequencies. The finite element model updates involved a compensation process of anisotropic material properties, such as the elastic and shear moduli of orthotropic structural members. The technique adopted was based on a discrete genetic algorithm, which is an optimization technique. The cost function was adopted to assess the optimization problem, which consisted of the calculated and referenced low-order natural frequencies for the target structure. The optimization process was implemented with MATLAB, which includes the finite element updates and the corresponding natural frequency calculations with MSC/NASTRAN. Material properties of a virtual cantilevered orthotropic beam were estimated to verify the presented method and the results obtained were compared with the reference values. Furthermore, the technique was applied to a cantilevered CFRP beam to successfully estimate the unknown material properties.