• Title/Summary/Keyword: Elastic Support

Search Result 313, Processing Time 0.025 seconds

Damage zone induced by quasi-static gas pressure during blasting (준정적인 발파 가스압에 의한 암반의 손상 영역 예측)

  • Sim, Young-Jong;Cho, Gye-Chun;Kim, Hong-Taek
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.1409-1416
    • /
    • 2010
  • It is essential to predict a blasting-induced excavation damage zone (EDZ) beyond the proposed excavation line of a tunnel because the unwanted damage area requires extra support system for tunnel safety. Complicated blasting process which may hinder a proper characterization of the damage zone can be effectively represented by two loading mechanisms. The one is a dynamic impulsive load generating stress waves outwards immediately after detonation. The other is a gas pressure that remains for a relatively long time. Since the gas pressure reopens up the arrested cracks and continues to extend some cracks, it contributes to the final formation of EDZ induced by blasting. This paper presents the simple method to evaluate EDZ induced by gas pressure during blasting in rock. The EDZ is characterized by analyzing crack propagation from the blasthole. To do this, a model of the blasthole with a number of radial cracks of equal length in an infinite elastic plane is considered. In this model, the crack propagation is simulated by using three conditions, the crack propagation criterion, the mass conservation of the gas, and the adiabatic condition. As a result, the stress intensity factor of the crack generally decreases as crack propagates from the blasthole so that the length of the crack is determined. In addition, the effect of rock properties, initial number of cracks, and the adiabatic exponent are investigated.

  • PDF

Study on Wear Properties of GCV Materials with DLC Coating (GCV소재의 DLC 코팅 마모특성에 관한 연구)

  • Lee, Soo-Chul;Kim, Nam-Seok;Nam, Ki-Woo;Ahn, Seok-Hwan;Kim, Hyun-Soo
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.6
    • /
    • pp.71-75
    • /
    • 2010
  • Although Graphite Compacted Vermicular (GCV) was first observed in 1948, the narrow range for stable foundry production precluded the high volume application of GCV to complex components such as cylinder blocks and heads until advanced process control technologies became available. This, in turn, had to await the advent of modern measurement electronics and computer processors. Following the development of foundry techniques and manufacturing solutions, primarily initiated in Europe during the 1990s, the first series production of GCV cylinder blocks began during 1999. Today, more than 40,000 GCV cylinder blocks are produced each month for OEMs, including Audi, DAF, Ford, Hundai, MAN, Mercedes, PSA, Volkswagen, and Volvo. Given that new engine programs are typically intended to support three to four vehicle generations, the chosen engine materials must satisfy current design criteria and also provide the potential for future performance upgrades without changing the overall block architecture. With at least a 75% increase in the ultimate tensile strength, a 40% increase in the elastic modulus, and approximately double the fatigue strength of either iron or aluminum, GCV is ideally suited to meet current and future of engine design and performance requirements.

FT-Indoornavi: A Flexible Navigation Method Based on Topology Analysis and Room Internal Path Networks for Indoor Navigation (FT-IndoorNavi: 토폴로지 분석 및 실내 경로 네트워크 분석에 기반한 실내 네비게이션을 위한 유연한 네비게이션 알고리즘)

  • Zhou, Jian;Li, Yan;Lee, Soon Jo;Bae, Hae Young
    • Spatial Information Research
    • /
    • v.21 no.2
    • /
    • pp.1-9
    • /
    • 2013
  • Recently many researches have focused on indoor navigation system. An optimal indoor navigation method can help people to find a path in large and complex buildings easily. However, some indoor navigation algorithms only calculate approximate routes based on spatial topology analysis, while others only use indoor road networks. However, both of them use only one of the spatial topology or network information. In this paper, we present a navigation method based on topology analysis and room internal networks for indoor navigation path. FT-Indoornavi (Flexible Topology Analysis Indoornavi) calculate internal routes based on spatial topology and internal path networks to support length-dependent and running-time optimal routing, which adapt to complex indoor environment and can achieve a better performance in comparison of Elastic algorithm and iNav.

Design Suggestion of Active T-shirt According to the Exercise Types in the Silver Generation (실버세대의 운동유형에 따른 액티브 티셔츠 디자인 제안)

  • Kim, Young-Soon;Koo, Young-Seok
    • Fashion & Textile Research Journal
    • /
    • v.17 no.6
    • /
    • pp.881-894
    • /
    • 2015
  • The silver generation have clothing style of optimal daily life comparing than young generation because they do not participate a specific sport event but daily- life exercise. As the human body ages, the figure of the silver generation shows different body shape because upper body changes to curved figure including the belly and waist part. Therefore, clothing characteristics for the silver generation should be considered with proper function, design and textiles to optimize body movement. This study investigated various exercise types according to motion analysis of the silver generation in order to develop the design of the active T-shirts reflecting the structural properties and providing the optimum exercise circumstance. The results to consider design needs are as followed; As the T-shirts design for the flexible exercise which required frequent movement of upper body such as bending and waist twisting during body stretching, a stretch fabric applied to the waist part considering T-shirts allowance and length to make extreme elongation and support for well-fitting appearance of the T-shirts. As the T-shirts design for the instantaneous reactionary exercise, high elastic four-way stretch fabric is applied to the part of arm hole to optimize skeletal and muscle movement for entire body and arm work. As the T-shirts design for the endurance exercise such as climbing, cycling, and walking, the shoulder line of the back part has cutting line allowance to make optimum movement of the upper body but no change of the waist part.

Numerical modeling of brittle failure of the overstressed rock mass around deep tunnel (심부 터널 주변 과응력 암반의 취성파괴 수치모델링)

  • Lee, Kun-Chai;Moon, Hyun-Koo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.5
    • /
    • pp.469-485
    • /
    • 2016
  • The failure of rock mass around deep tunnel, different from shallow tunnel largely affected by discontinuities, is dominated by magnitudes and directions of stresses, and the failures dominated by stresses can be divided into ductile and brittle features according to the conditions of stresses and the characteristics of rock mass. It is important to know the range and the depth of the V-shaped notch type failure resulted from the brittle failure, such as spalling, slabbing and rock burst, because they are the main factors for the design of excavation and support of deep tunnels. The main features of brittle failure are that it consists of cohesion loss and friction mobilization according to the stress condition, and is progressive. In this paper, a three-dimensional numerical model has been developed in order to simulate the brittle behavior of rock mass around deep tunnel by introducing the bi-linear failure envelope cut off, elastic-elastoplastic coupling and gradual spread of elastoplastic regions. By performing a series of numerical analyses, it is shown that the depths of failure estimated by this model coincide with an empirical relation from a case study.

Evaluation of Dynamic Properties through Large Triaxial Test : Development and Verification of Apparatus (대형삼축압축실험을 이용한 동적물성 산정 : 장비구축 및 검증)

  • Lee, Sung-Jin;Kim, Yun-Ki;Lee, Jun-S.;Hwang, Seon-Keun;Park, Jae-Jun
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.640-649
    • /
    • 2010
  • Coarse granular materials such as gravel and crushed stone have been used as an important fill materials to large soil structure of railway, road, dam and so on. Although much studies for general soil materials have been carried out domestically, the studies for coarse materials were insufficient. Particularly, it is the level in which the study for dynamic properties(Elastic modulus and damping ratio) of coarse materials, applies the foreign country literature. This is due to the lack of large equipment for element test. But large soil structures made of coarse granular materials are generally important infrastructures. Therefore, the reliable design parameters for coarse materials should be obtained for safe and economic design, construction and maintenance. Triaxial test is the laboratory test method that is capable of controlling a confining pressure and boundary condition. In this project, we made a multi-purpose large triaxial testing system. This testing system is able to test coarse granular materials with maximum particle diameter of 100mm and support both the load control and displacement control. The load cell is installed inside of triaxial cell and the axial displacement is measured locally in order to control and measure more accurately in the small strain level. The verification test of this testing system was carried out with urethane verification specimens. So, from now on the useful information for coarse granular materials are expected to suggested by performing many tests with various material and condition.

  • PDF

A Study on Structural Safety of a Urethane Wheel Using FEM (유한요소법을 이용한 우레탄 휠의 구조 안전성에 관한 연구)

  • Song Ha Jong;Jong Il Ho;Yoon Ji Won;Jun Kab Jin;Park Joong Kyung;Lee Hyung;Park Tae Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.10 s.175
    • /
    • pp.114-120
    • /
    • 2005
  • Urethane is a high polymeric and elastic material useful in designing mechanic parts that cannot be molded with rubber or plastic material. In particular, urethane is high in mechanical strength and anti-abrasive. Hereby, a urethane coated aluminum wheel is used to support of the OHT vehicle moving back and forth to transport products. For the sake of verifying the safety of the vehicle, structural safety fur applied maximum dynamic load on a urethane wheel must be examined carefully while driving. Therefore, we performed a dynamic simulation on the OHT vehicle model and we determined the driving load. The area definition of applied load may be obtained from the previous study of Hertzian and Non-Hertzian contact force model having exact properties of contact material. But the static analysis is simulated after we have performed the actual contact area test for each load since the proper material properties of urethane have not been guaranteed. In this study, the method of distributing loads for each node is included. Finally, in coMParison with the results of analysis and load-displacement curve obtained from the compression test, we have defined the material properties of urethane. In the analysis, we verified the safety of the wheel. Finally, we performed a mode analysis using the obtained material properties. With these results, we presented a reliable finite element model.

Influence of end fixity on post-yield behaviors of a tubular member

  • Cho, Kyu Nam
    • Structural Engineering and Mechanics
    • /
    • v.13 no.5
    • /
    • pp.557-568
    • /
    • 2002
  • For the evaluation of the capability of a tubular member of an offshore structure to absorb the collision energy, a simple method can be employed for the collision analysis without performing the detailed analysis. The most common simple method is the rigid-plastic method. However, in this method any characteristics for horizontal movement and rotation at the ends of the corresponding tubular member are not included. In a real structural system of an offshore structure, tubular members sustain a certain degree of elastic support from the adjacent structure. End fixity has influences in the behaviors of a tubular member. Three-dimensional FEM analysis can include the effect of end fixity fully, however in viewpoints of the inherent computational complexities of the 3-D approach, this is not the recommendable analysis at the initial design stage. In this paper, influence of end fixity on the behaviors of a tubular member is investigated, through a new approach and other approaches. A new analysis approach that includes the flexibility of the boundary points of the member is developed here. The flexibility at the ends of a tubular element is extracted using the rational reduction of the modeling characteristics. The property reduction is based on the static condensation of the related global stiffness matrix of a model to end nodal points of the tubular element. The load-displacement relation at the collision point of the tubular member with and without the end flexibility is obtained and compared. The new method lies between the rigid-plastic method and the 3-demensional analysis. It is self-evident that the rigid-plastic method gives high strengthening membrane effect of the member during global deformation, resulting in a steeper slope than the present method. On the while, full 3-D analysis gives less strengthening membrane effect on the member, resulting in a slow going load-displacement curve. Comparison of the load-displacement curves by the new approach with those by conventional methods gives the figures of the influence of end fixity on post-yielding behaviors of the relevant tubular member. One of the main contributions of this investigation is the development of an analytical rational procedure to figure out the post-yielding behaviors of a tubular member in offshore structures.

Geometrically non-linear static analysis of a simply supported beam made of hyperelastic material

  • Kocaturk, T.;Akbas, S.D.
    • Structural Engineering and Mechanics
    • /
    • v.35 no.6
    • /
    • pp.677-697
    • /
    • 2010
  • This paper focuses on geometrically non-linear static analysis of a simply supported beam made of hyperelastic material subjected to a non-follower transversal uniformly distributed load. As it is known, the line of action of follower forces is affected by the deformation of the elastic system on which they act and therefore such forces are non-conservative. The material of the beam is assumed as isotropic and hyperelastic. Two types of simply supported beams are considered which have the following boundary conditions: 1) There is a pin at left end and a roller at right end of the beam (pinned-rolled beam). 2) Both ends of the beam are supported by pins (pinned-pinned beam). In this study, finite element model of the beam is constructed by using total Lagrangian finite element model of two dimensional continuum for a twelve-node quadratic element. The considered highly non-linear problem is solved by using incremental displacement-based finite element method in conjunction with Newton-Raphson iteration method. In order to use the solution procedures of Newton-Raphson type, there is need to linearized equilibrium equations, which can be achieved through the linearization of the principle of virtual work in its continuum form. In the study, the effect of the large deflections and rotations on the displacements and the normal stress and the shear stress distributions through the thickness of the beam is investigated in detail. It is known that in the failure analysis, the most important quantities are the principal normal stresses and the maximum shear stress. Therefore these stresses are investigated in detail. The convergence studies are performed for various numbers of finite elements. The effects of the geometric non-linearity and pinned-pinned and pinned-rolled support conditions on the displacements and on the stresses are investigated. By using a twelve-node quadratic element, the free boundary conditions are satisfied and very good stress diagrams are obtained. Also, some of the results of the total Lagrangian finite element model of two dimensional continuum for a twelve-node quadratic element are compared with the results of SAP2000 packet program. Numerical results show that geometrical nonlinearity plays very important role in the static responses of the beam.

Seismic Response Analysis of a Floating Bridge with Discrete Pontoons (이산폰툰형 부유식교량의 지진응답해석)

  • Kwon, Jang-Sup
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.2 s.42
    • /
    • pp.47-58
    • /
    • 2005
  • Dynamic response analysis in time dimain is conducted for floating bridges with discrete pontoons subject to spatial variation of ground motions. The Spatial variation of ground motions is considered with the coherency function model which represents wave passage, incoherence and local site effects. The superstructure of the bridge is represented by space frame and elastic catenary cable elements, the abutment us modelde with the spring element of FHWA guideline for considering soil structure interaction and the concept of retardation function is utilized to consider the frequency dependency of the hydrodynamic coefficients which are obtainde by boundary element method. multiple support excitations considering the spatial variation. The noticeable amplification of the response can be shown when the spatial variation of ground motions is incorporated in the anallysis of floating bridges.